K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2020

Tớ sửa lại đề 1 chút:

\(x^2-\left(5m-1\right)x+6m^2-2m=0\)

Gọi x1;x2 là các nghiệm của PT. Tìm m để \(x_1^2+x_2^2=1\)

Giải

Theo hệ thức Vi-ét ta có:\(\hept{\begin{cases}x_1+x_2=5m-1\\x_1x_2=6m^2-2m\end{cases}}\)

Do đó: \(x_1^2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

\(\Leftrightarrow\left(5m-1\right)^2-2\left(6m^2-2m\right)=1\)

\(\Leftrightarrow25m^2-10m+1-12m^2+4m=1\)

\(\Leftrightarrow13m^2-6m=0\)

\(\Leftrightarrow m\left(13m-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\13m-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}}\)

Vậy m=0 hoặc m=\(\frac{6}{13}\)thì phương trình có 2 nghiệm x1;x2 thỏa mãn \(x_1^2+x_2^2=1\)

13 tháng 2 2020

a, \(\Delta=\left(5m-1\right)^2-4\left(6m^2-2m\right)=25m^2-10m+1-24m^2+8m\)

\(=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\left(đpcm\right)\)

c, Theo hệ thức Vi-lét ta có: \(\hept{\begin{cases}x_1+x_2=5m-1\\x_1x_2=6m^2-2m\end{cases}}\)

\(\Rightarrow x^2_1+x^2_2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

\(\Leftrightarrow\left(5m-1\right)^2-2\left(6m^2-2m\right)=1\)

\(\Leftrightarrow25m^2-10m+1-12m^2+4m=1\)

\(\Leftrightarrow13m^2-6m=0\)

\(\Leftrightarrow m\left(13m-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\13m-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}\)

Vậy \(\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}\) thì pt có 2 nghiệm \(x_1;x_2\) thỏa mãn \(x^2_1+x^2_2=1\)

10 tháng 1 2019

Phương trình (2m - 1) x 2  - 2(m + 4)x + 5m + 2 = 0 ( m   1 2 )

a: \(\text{Δ}=\left(5m-1\right)^2-4\left(6m^2-2m\right)\)

\(=25m^2-10m+1-24m^2+8m=m^2-2m+1=\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có nghiệm

b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=1\)

\(\Leftrightarrow\left(5m-1\right)^2-2\left(6m^2-2m\right)=1\)

\(\Leftrightarrow25m^2-10m+1-12m^2+4m-1=0\)

\(\Leftrightarrow13m^2-6m=0\)

=>m(13m-6)=0

=>m=0 hoặc m=6/13

24 tháng 4 2022

Cho phương trình: x^2 - 2(m-1)x + m-3=0 (m là tham số). Tìm m để phương trình có hai nghiệm phân biệt cùng dương

24 tháng 5 2022

hình như đề thiếu hả bạn

6 tháng 6 2022

thiếu đâu đủ mà

Ta có: \(\Delta=4m^2+4m-11\)

Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow4m^2+4m-11>0\)

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+3\\x_1x_2=2m+5\end{matrix}\right.\)

Để phương trình có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+4m-11>0\\2m+3>0\\2m+5>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< \dfrac{-1-2\sqrt{3}}{2}\\m>\dfrac{-1+2\sqrt{3}}{2}\end{matrix}\right.\\m>-\dfrac{3}{2}\\m>-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow m>\dfrac{-1+2\sqrt{3}}{2}\)

 Mặt khác: \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{4}{3}\)

\(\Rightarrow\dfrac{x_1+x_2+2\sqrt{x_1x_2}}{x_1x_2}=\dfrac{16}{9}\) \(\Rightarrow\dfrac{2m+3+2\sqrt{2m+5}}{2m+5}=\dfrac{16}{9}\)

\(\Rightarrow18m+27+18\sqrt{2m+5}=32m+80\)

\(\Leftrightarrow14m-53=18\sqrt{2m+5}\)

\(\Rightarrow\) ...

 

22 tháng 5 2021

giúp mình với ạ ! Mình cảm ơn ạ 

NV
1 tháng 3 2021

\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\\Delta'=\left(m+4\right)^2-\left(5m+2\right)\left(2m-1\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\-1\le m\le2\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+4\right)}{2m-1}\\x_1x_2=\dfrac{5m+2}{2m-1}\end{matrix}\right.\)

\(x_1^2+x_2^2=2x_1x_2+16\Leftrightarrow\left(x_1+x_2\right)^2=4x_1x_2+16\)

\(\Leftrightarrow4\left(\dfrac{m+4}{2m-1}\right)^2=4\left(\dfrac{5m+2}{2m-1}\right)+16\)

\(\Leftrightarrow-25m^2+25m+14=0\Rightarrow\left[{}\begin{matrix}m=-\dfrac{2}{5}\\m=\dfrac{7}{5}\end{matrix}\right.\) (đều thỏa mãn)

Hình như phương trình này vô nghiệm mà bạn

14 tháng 4 2022

Thảo luận 1

đầu tiên cho denta > 0 để có 2 nghiệm đã ta thấy denta'=m^2+(m-1)^2 luôn luôn duơng nên có 2 no theo Viet ta có S= x1+x2=-b/a=2(m+1) P=x1.x2=c/a=4m-m^2 Theo GT A=/x1-x2/ min tuơng đuơng A^2=(x1-x2)^2 min=(x1+x2)^2-4x1.x2 ráp tổng tích vào, làm gọn ta có A^2= 2(m-1)^2+4m^2 mà 4m^2>=0, mim khi m=0, A^2=2 2(m-1)^2>=0, min khi m=1, A^2=4 Chọn A^2min=2, suy ra Amin= căn 2

Thảo luận 2

A=/x1-x2/ => A^2 = /x1-x2/^2 = (x1-x2)^2 => Amin khi (x1-x2)^2 min = (x1+x2)^2 - 4x1x2 min Ta co: x1 + x2 = 2(m+1) ; x1x2 = 4m-m^2. Thay vao: 4(2m^2 -2m+1) = 8 (m-1/2)^2 + 2 >= 2. A^2 >= 2 A = 0) hay A >= can2. Vậy Amin = can 2

14 tháng 4 2022

\(a=1;b=-2\left(2m+1\right);c=4m^2+4m;b'=\dfrac{b}{2}=-\left(2m+1\right)\)

\(\Delta'=b'^2-ac=\left[-\left(2m+1\right)\right]^2-1.\left(4m^2+4m\right)\\ =4m^2+4m+1-4m^2-4m\\ =1>0\)

\(\Leftrightarrow\Delta'>0\) mà \(a=1\ne0\left(luônđúng\right)\)

=> pt luôn có 2 no pb x1;x2

ad đl viet có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(2m+1\right)=4m+2\\x_1x_2=\dfrac{c}{a}=4m^2+4m\end{matrix}\right.\)

ta có: \(\left|x_1-x_2\right|=x_1+x_2\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=\left(x_1+x_2\right)^2\\ \Leftrightarrow\left(4m+2\right)^2-4\left(4m^2+4m\right)=\left(4m+2\right)^2\\ \Leftrightarrow-4\left(4m^2+4m\right)=0\\ \Leftrightarrow4m\left(m+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-1\left(loại\right)\end{matrix}\right.\)