K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2019

Tìm max chứ nhể ???

Có : \(\Delta'=m^2+m\)

Pt có 2 nghiệm  p/b thì \(\Delta'=m^2+m>0\Leftrightarrow\orbr{\begin{cases}m< -1\\m>0\end{cases}}\)

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m\end{cases}}\)

Vì x1; x2 là nghiệm của pt nên \(\hept{\begin{cases}x_1^2-2mx_1-m=0\\x_2^2-2mx_2-m=0\end{cases}}\)

                                    \(\Rightarrow\hept{\begin{cases}2mx_1=x_1^2-m\\2mx_2=x_2^2-m\end{cases}}\)

Ta có : \(T=\frac{1}{x_1^2+2mx_2+11\left(m+1\right)}+\frac{1}{x_2^2+2mx_1+11\left(m+1\right)}\)

             \(=\frac{1}{x_1^2+x_2^2-m+11m+11}+\frac{1}{x_2^2+x_1^2-m+11m+11}\)

             \(=\frac{1}{\left(x_1+x_2\right)^2-2x_1x_2+10m+11}+\frac{1}{\left(x_1+x_2\right)^2-2x_1x_2+10m+11}\)

             \(=\frac{2}{\left(x_1+x_2\right)^2-2x_1x_2+10m+11}\)

             \(=\frac{2}{4m^2+2m+10m+11}\)

            \(=\frac{2}{4m^2+12m+11}\)

            \(=\frac{2}{\left(4m^2+12m+9\right)+2}\)

           \(=\frac{2}{\left(2m+3\right)^2+2}\le\frac{2}{2}=1\)

Dấu "=" khi m = -3/2 (thỏa mãn)

15 tháng 4 2017

sao cho T đạt GTLN nha

15 tháng 4 2017

a, Ta có x2- 2mx - m = 0 (1)

Với m=1 , (1)<=> x2- 2x-1=0

<=> x2-2x+1 -2 = 0

<=> (x-1)2=2

=>\(\left[{}\begin{matrix}x-1=-\sqrt{2}\\x-1=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{2}+1\\x=\sqrt{2}+1\end{matrix}\right.\)

b , câu b ko biết làm

1 tháng 5 2019

a) ĐK:\(m^2-4m+4\ge0\left(LĐ\right)\)

Theo hệ thức Viet:\(x_1+x_2=m;x_1x_2=m-1\)

\(R=\frac{2m-2+3}{m^2-2m+2+2\left(1+m-1\right)}\)

\(=\frac{2m+1}{m^2+2}\)

\(\Rightarrow Rm^2+2R-2m-1=0\)

Để pt có ng0:\(1-R\left(2R-1\right)\ge0\)

\(\Leftrightarrow-2R^2+R+1\ge0\)

\(\Leftrightarrow\frac{-1}{2}\le R\le1\)

\(R_{max}=1\)

b) Trừ đi rồi tìm m.

Chuyển vế :

\(x_1^2=2\left(m+1\right)x_1-m^2+1\)

thay vào Phuogw trình tìm m thôi

3 tháng 6 2017

1. Với m=5

\(\Rightarrow x^2-\left(2.5+1\right).x+5^2-1=0\\ \Rightarrow x^2-11.x=-24\\ \)

\(\Rightarrow x^2-\frac{11}{2}.2.x+\left(\frac{11}{2}\right)^2=-24-\left(\frac{11}{2}\right)^2=\frac{-217}{4}\\ \Rightarrow\left(x+\frac{11}{2}\right)^2=-\frac{217}{4}\)

nên x thuộc rỗng

8 tháng 4 2020

Để phương trình có nghiệm x1;x2 thì :

\(\Delta'=\left(m+4\right)^2-\left(m^2-8\right)\)

\(=\left(m^2+8m+16\right)-m^2+8\)

\(=8m+24\ge0\Leftrightarrow m\ge-3\)

Theo hệ thức Viet,ta có :

\(\left\{{}\begin{matrix}x1+x2=2\left(m+4\right)\\x1.x2=m^2-8\end{matrix}\right.\)

a) \(A=x1^2+x2^2-x1-x2=\left(x1+x2\right)^2-\left(x1+x2\right)-2x1x2=4\left(m+4\right)^2-2\left(m+4\right)-2\left(m^2-8\right)\)

\(A=2m^2+30m+66=0\)

\(A=\left(4m+3\right)^2-\frac{519}{8}\ge-\frac{519}{8}\)

b) \(B=2\left(m+4\right)-3\left(m^2-8\right)\)

\(B=-3m^2+2m+32\)

\(B=\frac{97}{3}-\left(3x-1\right)^2\le\frac{97}{3}\Leftrightarrow x=\frac{1}{3}\)

c) \(C=x1^2+x2^2-x1x2=\left(x1+x2\right)^2-3x1x2\)

\(C=4\left(m+4\right)^2-3\left(m^2-8\right)\)

\(C=-3m^2+4m+28\)

\(C=\frac{88}{3}-\left(3x-2\right)^2\le\frac{88}{3}\Leftrightarrow x=\frac{2}{3}\)

13 tháng 4 2020

Câu a biến đổi để tìm gtnn sai á g=)))

9 tháng 8 2017

a. Để phương trình (1) có 1 nghiệm bằng 1 \(\Rightarrow x=1\)thỏa mãn phương trình 

hay \(1-2m+4m-3=0\Rightarrow2m=2\Rightarrow m=1\)

Vậy \(m=1\)thì (1) có 1 nghiệm bằng 1

b. Để (1) có 2 nghiệm \(x_1;x_2\)phân biệt thì \(\Delta>0\Rightarrow=4m^2-4\left(4m-3\right)>0\Rightarrow4m^2-16m+12>0\)

\(\Rightarrow\orbr{\begin{cases}x< 1\\x>3\end{cases}}\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=4m-3\end{cases}}\)

Để \(x_1^2+x_2^2=6\Rightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\Rightarrow4m^2-2\left(4m-3\right)=6\)

\(\Rightarrow4m^2-8m+6=6\Rightarrow4m^2-8m=0\Rightarrow4m\left(m-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}m=0\left(tm\right)\\m=2\left(l\right)\end{cases}}\)

Vậy với \(m=0\)thỏa mãn yêu cầu bài toán 

19 tháng 5 2017

Đầu tiên để pt có 2 nghiệm phân biệt thì \(\Delta'>0\) rồi tìm điều kiện của m

Dùng Vi-ét tính ra m thôi bạn