Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hệ thức vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=m-1\end{matrix}\right.\)
Ta có:
\(x_1^2+x^2_2=30\)
\(\left(x_1+x_2\right)^2-2x_1.x_2=30\)
\(4^2-2\left(m-1\right)=30\)
\(2m-2=-14\)
\(m=-6\)
Để phương trình đã cho có hai nghiệm \(x_1,x_2\) thì
\(\Delta'>0\Leftrightarrow2^2-\left(m-1\right)=5-m>0\Leftrightarrow m< 5\)
Khi \(m< 5\) phương trình đã cho có hai nghiệm \(x_1,x_2\).
Theo định lí Viete ta có:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)
Ta có:
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2\left(m-1\right)=18-2m=30\)
\(\Leftrightarrow m=-6\) (thỏa mãn)
\(ac=-1< 0\Rightarrow\) pt luôn có 2 nghiệm pb trái dấu với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-1\end{matrix}\right.\)
a.
\(x_1^2+x_2^2-x_1x_2=7\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\)
\(\Leftrightarrow4m^2+3=7\)
\(\Rightarrow m^2=1\Rightarrow m=\pm1\)
b.
\(x_1-x_2=0\Rightarrow x_1=x_2\Rightarrow x_1x_2=x_2^2\ge0\) (vô lý do \(x_1x_2=-1< 0\) với mọi m)
Vậy ko tồn tại m thỏa mãn yêu cầu
a) Khi \(m=1\) thì pt đã cho trở thành \(x^2-2x-10=0\) (*)
pt (*) có \(\Delta'=\left(-1\right)^2-\left(-10\right)=11>0\)
Do đó (*) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-\left(-1\right)+\sqrt{11}}{1}=1+\sqrt{11}\\x_2=\dfrac{-\left(-1\right)-\sqrt{11}}{1}=1-\sqrt{11}\end{matrix}\right.\)
b) Xét pt đã cho \(x^2-mx-10=0\) \(\left(a=1;b=-m;c=-10\right)\)
Nhận thấy \(ac=1\left(-10\right)=-10< 0\) nên pt đã cho luôn có 2 nghiệm phân biệt \(x_1,x_2\).
Áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-m}{1}=m\\x_1x_2=\dfrac{-10}{1}=-10\end{matrix}\right.\)
Ta có \(x_1^2+x_2^2=29\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\Leftrightarrow m^2-2\left(-10\right)=29\)\(\Leftrightarrow m^2+20=29\Leftrightarrow m^2=9\Leftrightarrow m=\pm3\)
Vậy để pt đã cho có 2 nghiệm phân biệt thỏa mãn đề bài thì \(m=\pm3\)
Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
a, Thay m=3 vào pt ta có:
\(\left(1\right)\Leftrightarrow x^2-6x+4=0\\ \Leftrightarrow x=3\pm\sqrt{5}\)
b, Để pt có 2 nghiệm thì \(\Delta'\ge0\)
\(\Leftrightarrow\left(-m\right)^2-1.4\ge0\\ \Leftrightarrow m^2-4\ge0\\ \Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)
\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\\ \Leftrightarrow x^2_1+2x_1+1+x^2_2+2x_2+1=2\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\\ \Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\\ \Leftrightarrow4m^2+4m-8=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)
Để pt có hai nghiệm \(x_1;x_2\Leftrightarrow\Delta\ge0\)
\(\Leftrightarrow4-m^2\ge0\) \(\Leftrightarrow m\in\left[-2;2\right]\)
Theo định lí viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=\dfrac{m^2-2}{2}\end{matrix}\right.\)
\(H=2x_1x_2-x_1-x_2+9=m^2-2-m+9\)\(=m^2-m+7\)
Ta thấy H là một parabol và m nằm trong \(\left[-2;2\right]\) ,max của chúng sẽ chỉ ở vị trí m=-2 hoặc m=2
Tại m=-2 thì H=13
Tại m=2 thì H=9
Vậy maxH=132 khi m=-2
(Mình chỉ biets trình bày cách này thôi, nếu bạn biết vẽ bảng biến thiên sẽ dễ hơn)
Ta có \(\Delta'=m^2-(m-3)=m^2-m+3>0\) nên pt luôn có 2 nghiệm phân biệt
Ta có \(\left|x_1\right|=\left|x_2\right|\Leftrightarrow\left[{}\begin{matrix}x_1=x_2\left(loại\right)\\x_1+x_2=0\end{matrix}\right.\).
Do đó \(x_1+x_2=0\Leftrightarrow\dfrac{2m}{1}=0\Leftrightarrow m=0\).
Vậy m = 0.