K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 4 2019

Lời giải:

1.

Ta thấy \(\Delta=(2m+1)^2-4(m^2+m-6)=25>0, \forall m\)

Do đó pt luôn có 2 nghiệm pb với mọi $m$

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2m+1\\ x_1x_2=m^2+m-6\end{matrix}\right.\)

Để pt có 2 nghiệm đều âm thì:

\(\left\{\begin{matrix} x_1+x_2=2m+1< 0\\ x_1x_2=m^2+m-6>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2m+1< 0\\ (m-2)(m+3)>0\end{matrix}\right.\)

\(\Rightarrow m< -3\)

2.

Theo công thức nghiệm của pt bậc 2:

\(x_1=\frac{2m+1+\sqrt{\Delta}}{2}=m+3\)

\(x_2=\frac{2m+1-\sqrt{\Delta}}{2}=m-2\)

Khi đó:

\(|x_1^3-x_2^3|=50\)

\(\Leftrightarrow |(m+3)^3-(m-2)^3|=50\)

\(\Leftrightarrow |15m^2+15m+35|=50\)

\(\Leftrightarrow |3m^2+3m+7|=10\)

\(\Rightarrow m=\frac{-1\pm \sqrt{5}}{2}\) (thỏa mãn)

Vậy......

27 tháng 4 2020

Xét 

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-6\right)=4m^2+4m+1-4m^2-4m+24=25>0\)

Vậy phương trình luôn có nghiệp với \(\forall m\)

Theo Viete ta có ngay \(x_1+x_2=2m+1;x_1x_2=m^2+m-6\)

Ta có biến đổi sau:

\(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2=\left(2m+1\right)^2-3\left(m^2+m-6\right)\)

\(=4m^2+4m+1-3m^2-3m+18\)

\(=m^2-m+19=\left(m-\frac{1}{2}\right)^2+18,75>0\) 

Vậy \(\left|x_1^3+x_2^3\right|=\left|m^2-m+19\right|=m^2-m+19\)

Khi đó ta có được \(m^2-m+19=50\Leftrightarrow m^2-m-31=0\)

Đến đây dễ rồi nè :)

6 tháng 7 2017

Để PT có 2 nghiệm phân biệt thì

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)>0\)

\(\Leftrightarrow m< 0\)

Theo vi et ta có:

\(\hept{\begin{cases}x_1+x_2=-2m+4\\x_1.x_2=m^2-2m+4\end{cases}}\)

Theo đề bài thì

\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)

\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-2x_1.x_2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)

\(\Leftrightarrow\frac{2}{\left(-2m+4\right)^2-2\left(m^2-2m+4\right)}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)

\(\Leftrightarrow\frac{1}{m^2-6m+4}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)

\(\Leftrightarrow15m^4-120m^3+296m^2-480m+240=0\)

Với m < 0  thì VP > 0 

Vậy không tồn tại m để thỏa bài toán.

7 tháng 2 2021

a) Phương trình \(x^2-2mx-2m-1=0\)có các hệ số a = 1; b = - 2m; c = - 2m - 1

\(\Delta=\left(-2m\right)^2-4\left(-2m-1\right)=4m^2+8m+4=4\left(m+1\right)^2\ge0\forall m\)

Vậy phương trình luôn có 2 nghiệm x1, x2 với mọi m (đpcm)

b) Theo Viète, ta có: \(x_1+x_2=2m;x_1x_2=-2m-1\)

Hệ thức \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=-5x_1x_2\)

\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=-5x_1x_2\)hay \(2\left(4m^2+4m+2\right)=10m+5\Leftrightarrow8m^2-2m-1=0\)\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{2}\\m=-\frac{1}{4}\end{cases}}\)

Vậy \(m=\frac{1}{2}\)hoặc \(m=-\frac{1}{4}\)thì phương trình có 2 nghiệm x1, x2 thỏa mãn\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\)

29 tháng 5 2016

em mới học lớp 7

29 tháng 5 2016

a)với m=1 ta có:

x2-(2*1+1)x+12+1-6=0

<=>x2-3x+2-6=0

<=>x2-3x-4=0

denta:(-3)2-(-4(1.4))=25

x1,2=\(\frac{3\pm\sqrt{25}}{2}\)=>x=-1 hoặc 4