K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

Ta có x1x2 = -1

=> x1 = -\(\frac{1}{x_2}\)

=> x1 - x2 = x1\(\frac{1}{x_1}\)

x1 > 0 thì

x1 + \(\frac{1}{x_1}\) >= 2\(\sqrt{x_1\frac{1}{x_1}}\)= 2

x1 < 0 thì

x1 + \(\frac{1}{x_1}\) <= -2\(\sqrt{x_1\frac{1}{x_1}}\)= -2

Vậy: |x1-x2| >= 2

15 tháng 3 2017

Trước khi làm hình như phải cm pt có nghiệm?

( a = 1, b = -m, c = -1)

\(\Delta=b^2-4ac\)

   \(=\left(-m\right)^2-4.1.\left(-1\right)\)

    \(=m^2+4>0\forall m\)

Vậy pt luôn có 2 nghiệm pb với mọi m

17 tháng 4 2016

Cho phương trình: x- (2m - 1)x - m = 0       

Co \(\Delta=\left(-\left(2m-1\right)\right)^2-4.1.\left(-m\right)=4m^2-4m+1+4m=4m^2+1>0\)

Vi \(\Delta>0\) nen PT luon co ngiem phan biet voi moi gia tri cua m

24 tháng 5 2016

Phương trình đúng là 

x- 2(m + 1)x + m2 = 0 

24 tháng 5 2016

Cho phương trình: X2 - (2m4+1)x + m2 + m - 1 = 0

a. Giải phương trình khi m=1 khi đó lập một phương trình nhận t1 = x+ xvà t= xxlàm nghiệm.

b. Chứng minh phương trình có nghiệm với mọi m.

c. Tìm m sao cho:

    A=(2x1 - x2)(2x2 - x1) đạt GTNN, thín GTNN đó (giá trị nhỏ nhất). 

chịu @_@

24 tháng 5 2016

a) thay m=1 vào lập denta giải pt ra đc x1=(3+căn5)/2;x2=(3-căn5)/2

t1=x1+x2=(3+căn5)/2+(3-căn5)/2=3

t2=x1*x2=(3+căn5)/2*(3-căn5)/2=1

=>t1+t2=4;t1*t2=3

=>t1;t2 là nghiệm của pt

T^2-4T+3=0

b) đenta=(2m+1)^2-4(m^2+m-1)=5>0

=>pt luôn luôn có nghiệm với mọi m

c) A=(2x1-x2)(2x2-x1)=5x1x2-2x1^2-2x2^2=5x1x2-2(x1^2+x2^2)=5x1x2-2(x1+x2)^2+4x1x2=9x1x2-2(x1+x2)^2

=9(m^2+m-1)-2(2m+1)^2=9m^2+9m-9-4m-2=9m^2+5m-11>=-421/36 khi x=-5/18

25 tháng 5 2019

a. Δ' = b'2 - ac = (m-1)2 - (-2m-3) = m2 - 2m + 1 + 2m + 3

= m2 + 4 ≥ 4 > 0 ∀ m ∈ R

Vậy pt đã cho luôn có hai nghiệm x1; x2 phân biệt với mọi m thuộc R

b. Áp dụng Viet, ta có \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1\cdot x_2=-2m-3\end{matrix}\right.\)

Theo đề ta có \(\left(4x_1+5\right)\left(4x_2+5\right)+19=0\)

\(16x_1x_2+20x_1+20x_2+25+19=0\)

\(16x_1x_2+20\left(x_1+x_2\right)+44=0\)

\(16\left(-2m-3\right)+20\left[-2\left(m-1\right)\right]+44=0\)

\(-32m-48-40m+40+44=0\)

\(-72m+36=0\Leftrightarrow m=\frac{1}{2}\)

Vậy với m = \(\frac{1}{2}\)thì pt đã cho có hai nghiệm x1; x2 thỏa mãn điều kiện \(\left(4x_1+5\right)\left(4x_2+5\right)+19=0\)

25 tháng 5 2016

Bảo Ngọc tính nghiệm bị sai!

25 tháng 5 2016

a) Ta xét : 

\(\Delta'=\left(m-2\right)^2+2m=m^2-2m+4=\left(m-1\right)^2+3\ge3>0\)

Vì \(\Delta'>0\)nên phương trình trên luôn có hai nghiệm phân biệt.

b) Dễ thấy : x1<x2 nên ta có : 

\(x_1=\frac{2\left(m-2\right)-\sqrt{\left(m-1\right)^2+3}}{2}=m-2-\sqrt{\left(m-1\right)^2+3}\) ; \(x_2=\frac{2\left(m-2\right)+\sqrt{\left(m-1\right)^2+3}}{2}=m-2+\sqrt{\left(m-1\right)^2+3}\)

\(x_2-x_1=x_1^2\Leftrightarrow2\sqrt{\left(m-1\right)^2+3}=\left(m-2-\sqrt{\left(m-1\right)^2+3}\right)^2\)

\(\Leftrightarrow\left(m-2\right)^2+\left(m-1\right)^2+3-2\left(m-2\right)\sqrt{\left(m-1\right)^2+3}=2\sqrt{\left(m-1\right)^2+3}\)

\(\Leftrightarrow m=2\)

Vậy m = 2

15 tháng 6 2015

1) \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)với mọi m=> pt luôn có nghiệm với mọi m

a) áp dụng hệ thức vi ét ta có: \(x1+x2=-m\)\(x1.x2=m-1\)

 \(B=x1^2+x2^2-4\left(x1+x2\right)=\left(x1+x2\right)^2-2x1x2-4\left(x1+x2\right)=m^2-2\left(m-1\right)-4\left(-m\right)=m^2+2m-2\)

\(=\left(m^2+2m+1\right)-3=\left(m+1\right)^2-3\ge-3\Rightarrow MinB=-3\Leftrightarrow m=-1\)

2) \(2x^2+2x+3x+3=0\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\Rightarrow\)x1=-1 và x2=-3/2

tổng 2 nghiệm \(x1^2+1+x2^2+1=1^2+1+\left(-\frac{3}{2}\right)^2+1=\frac{21}{4}\)

tích 2 nghiệm \(=\left(1^2+1\right)\left(\frac{3}{2}^2+1\right)=\frac{13}{2}\)=> PT cần tìm: \(x^2-\frac{21}{4}x+\frac{13}{2}=0\)

 

NV
15 tháng 6 2020

Bạn ghi ko đúng đề, thứ nhất pt này chỉ có 1 vế (thiếu)

Thứ 2 nếu pt này là \(x^2+2\left(m+1\right)x-2m=0\) thì cũng ko có nghiệm với mọi m (chứ ko phải x)

Ví dụ với \(m=-1\) pt thành: \(x^2+2=0\) (vô nghiệm)

Do đó đề sai