\(\dfrac{x-a}{x+a}-\dfrac{x+a}{x-a}+\dfrac{3a^2+a}{3a^2-a^2}=0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2023

a) Khi $a=3$, ta có phương trình:
$$x-3x+3-x+3x-3+3^2+3^3-3^2=0$$
$$\Leftrightarrow 6x=51 \Leftrightarrow x=\frac{17}{2}$$
Vậy nghiệm của phương trình là $x=\frac{17}{2}$.

b) Khi $a=1$, ta có phương trình:
$$x-x+1-x+1x-1+3+1-1=0$$
$$\Leftrightarrow x=0$$
Vậy nghiệm của phương trình là $x=0$.

c) Để phương trình có nghiệm $x=0,5$, ta cần giải phương trình:
$$0,5-a(0,5)+a-0,5+a(0,5)-a+3a^2+a^3-a^2=0$$
$$\Leftrightarrow a^3+3a^2-2a=0$$
$$\Leftrightarrow a(a-1)(a+2)=0$$
Vậy các giá trị của $a$ để phương trình có nghiệm $x=0,5$ là $a=0,1$ hoặc $a=-2$.

22 tháng 5 2023

 bạn có thể giải rõ hơn đc ko ạ

8 tháng 2 2018

a. Với a = -3 ta được:

\(\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}+\dfrac{27-3}{x^2-9}=0\)

\(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{24}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow x^2+6x+9-x^2+6x-9+24=0\)

\(\Leftrightarrow12x+24=0\)

\(\Leftrightarrow x=-2\)

8 tháng 2 2018

Giải phương trình :

\(\dfrac{x-a}{x+a}-\dfrac{x+a}{x-a}+\dfrac{3a^2+a}{x^2-a^2}=0\)

a) Với a = -3

\(\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}+\dfrac{27+3}{x^2-3^2}=0\)

ĐKXĐ : \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)

Ta có : \(\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}+\dfrac{27+3}{x^2-3^2}\)

\(\Leftrightarrow\) \(\dfrac{\left(x-3\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{27+3}{\left(x+3\right)\left(x-3\right)}=0\)

Khử mẫu ta có : \(\left(x-3\right)^2-\left(x+3\right)^2+27+3=0\)

\(x^2+6x+9-x^2+6x-9+30=0\)

\(\Leftrightarrow12x+30=0\)

\(\Leftrightarrow12x=-30\)

\(\Leftrightarrow x=-\dfrac{5}{2}\)

Tập nghiệm của pt là: \(S=\left\{-\dfrac{5}{2}\right\}\)

b) Với a = 1

\(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{3+3}{x^2-1}=0\)

ĐKXĐ : \(\left\{{}\begin{matrix}x+1\ne0\\x-1\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne1\end{matrix}\right.\)

Ta có : \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{3+3}{x^2-1}=0\)

\(\Leftrightarrow\) \(\dfrac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3+3}{\left(x+1\right)\left(x-1\right)}=0\)

Khử mẫu ta có : \(\left(x-1\right)^2-\left(x+1\right)^2+6=0\)

\(\Leftrightarrow x^2+x-1-x^2+x+1+6=0\)

\(\Leftrightarrow2x+6=0\)

\(\Leftrightarrow2x=-6\)

\(\Leftrightarrow x=-3\)

Tập nghiệm của pt là : \(S=\left\{-3\right\}\)

a: Khi a=-3 thì phương trình sẽ là:

\(\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}+\dfrac{3\cdot9-3}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow x^2+6x+9-x^2+6x-9+24=0\)

=>12x=-24

hay x=-2

b: Khi a=1 thì phương trình trở thành:

\(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow x^2-2x+1-x^2-2x-1+4=0\)

=>-4x+4=0

hay x=1(loại)

\(a,4x^2-\left(2x-1\right)\left(1-4x\right)=1\)

\(\left(2x-1\right)\left(1-4x\right)=4x.4x-1\)

\(TH1:\orbr{\begin{cases}2x-1=4x.4x-1\\1-4x=4x.4x-1\end{cases}}\Rightarrow\orbr{\begin{cases}2x-4x.4x=-1+1\\-4x-4x.4x=-1-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x-16x=0\\-4x-16x=-2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}-14x=0\\-20x=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{10}\end{cases}}}\)

Vậy pt có nghiệm là (x;y) = (0;1/10) 

tự thực hiện tiếp vs dấu - , kl TH1 thoi 

25 tháng 2 2019

a) Thay a = -1 vào phương trình

\(\dfrac{x-1}{x+3}+\dfrac{x-3}{x+1}=2\)

\(\Rightarrow\dfrac{x^2-1+x^2-9}{\left(x+3\right)\left(x+1\right)}=2\)

\(\Rightarrow2x^2-10=2\left(x+3\right)\left(x+1\right)=2x^2+8x+6\)

\(\Rightarrow2x^2+8x+6-2x^{10}+10=0\)

\(\Rightarrow8x+16=0\Rightarrow x=-2\)

b, c Làm tương tự như câu a

d)

Phương trình nhận x = 1 làm nghiệm

=> \(\dfrac{1+a}{1+3}+\dfrac{1-3}{1-a}=2\)

\(\Rightarrow\dfrac{a+1}{4}+\dfrac{2}{a-1}=2\)

\(\Rightarrow\dfrac{a^2-1+8}{4\left(a-1\right)}=2\)

\(\Rightarrow a^2+7=2\left(4a-1\right)=8a-2\)

\(\Rightarrow a^2-8x+9=0\)

\(\Rightarrow\left[{}\begin{matrix}a=4+\sqrt{7}\\a=4-\sqrt{7}\end{matrix}\right.\)

25 tháng 2 2019

Math processing error rồi :<

13 tháng 1 2018

minh giai phan d, nha bn :

x-a/b+c + x-b/c+a + x-c/a+b=3

=> (x-a/b+c - 1)+(x-b/a+c - 1 )+(x-c/a+b - 1) = 3-3=0

=>x-a-b-c/b+c + x-a-b-c/a+c + x-a-b-c/a+b =0

=>(x-a-b-c)(1/b+c + 1/a+c + 1/a+b )=0

Vi 1/b+c + 1/a+c + 1/a+b luon lon hon 0=>x-a-b-c=0

=>x=a+b+c

13 tháng 1 2018

g, x - a / b + c + x - b/ c+a + x - c/ a+b = 3x / a+b+c

10 tháng 3 2017

\(\Leftrightarrow A=\dfrac{\left(x-a\right)^2-\left(x+a\right)^2+3a^2+a}{\left(x-a\right)\left(x+a\right)}\)

\(\Leftrightarrow A=\dfrac{-4ax+3a^2+a}{\left(x-a\right)\left(x+a\right)}\Leftrightarrow\left\{{}\begin{matrix}\left|x\right|\ne a\\4ax=a\left(3a+1\right)\left(1\right)\end{matrix}\right.\)

a) với a=-3

\(\left(1\right)\Leftrightarrow4x=3.\left(-3\right)+1\Rightarrow x=-2\)(NHAN)

b)với a=-1

\(\left(1\right)\Leftrightarrow4x=3.\left(-1\right)+1\Rightarrow x=-\dfrac{2}{4}=-\dfrac{1}{2}\)(NHẬN)

c)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\x=\dfrac{3a+1}{4}=0,5\Rightarrow a=\dfrac{1}{3}\left(nhan\right)\end{matrix}\right.\)