Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo hệ thức Vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{3}\left(1\right)\\x_1x_2=\dfrac{m}{3}\left(2\right)\end{matrix}\right.\)
Ta có \(6x_1+x_2=0\)\(\Rightarrow5x_1+\left(x_1+x_2\right)=0\Rightarrow5x_1+\dfrac{5}{3}=0\Leftrightarrow x_1=-\dfrac{1}{3}\) Thay vào (1) ta được:
\(x_2-\dfrac{1}{3}=\dfrac{5}{3}\Rightarrow x_2=2\)
Thay \(x_1=-\dfrac{1}{3};x_2=2\) vào (2) ta được:
\(-\dfrac{2}{3}=\dfrac{m}{3}\Rightarrow m=-2\)
â) thay m = 6 và phương trình ta đc
\(x^2-5x+6=0\)
\(\Leftrightarrow\left(x-2\right).\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
b.
Phương trình có 2 nghiệm khi: \(\Delta=25-4m\ge0\Rightarrow m\le\dfrac{25}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)
Pt có 2 nghiệm dương khi \(m>0\)
\(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\)
\(\Leftrightarrow x_1^2x_2+x_2^2x_1+2x_1x_2\sqrt{x_1x_2}=36\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)+2x_1x_2\sqrt{x_1x_2}=36\)
\(\Leftrightarrow5m+2m\sqrt{m}=36\)
Đặt \(\sqrt{m}=t>0\Rightarrow2t^3+5t^2-36=0\)
\(\Leftrightarrow\left(t-2\right)\left(2t^2+9t+18\right)=0\)
\(\Leftrightarrow t=2\Rightarrow\sqrt{m}=2\)
\(\Rightarrow m=4\)
a: Khi m=-5 thì pt sẽ là x^2-5x-6=0
=>x=6 hoặc x=-1
b:
Δ=(-5)^2-4(m-1)=25-4m+4=-4m+29
Để pt có hai nghiệm thì -4m+29>=0
=>m<=29/4
x1-x2=3
=>(x1-x2)^2=9
=>(x1+x2)^2-4x1x2=9
=>5^2-4(m-1)=9
=>4(m-1)=25-9=16
=>m-1=4
=>m=5(nhận)
c: 2x1-3x2=5 và x1+x2=5
=>x1=4 và x2=1
x1*x2=m-1
=>m-1=4
=>m=5(nhận)
a) Để pt có 1 nghiệm bằng 1 thì \(2.1^2-3.1+m-1=0\Leftrightarrow m=2\).
Khi đó \(PT\Leftrightarrow2x^2-3x+1=0\Leftrightarrow\left(x-1\right)\left(2x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\).
Nghiệm còn lại là \(x=\dfrac{1}{2}\).
b) Ta có \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=2\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2}{x_1x_2}=4\Leftrightarrow\left(x_1-x_2\right)^2=0\Leftrightarrow x_1=x_2\).
Để pt có nghiệm kép khác 0 thì \(\left\{{}\begin{matrix}\Delta=3^2-8\left(m-1\right)\ge0\\m-1\ne0\end{matrix}\right.\Leftrightarrow m=\dfrac{17}{8}\).
phương trình (1) có 2 nghiệm \(\Leftrightarrow\Delta\ge0\)
\(\Leftrightarrow\left(-5\right)^2-4\times3\left(m-2\right)\ge0\)
\(\Leftrightarrow49-12m\ge0\)
\(m\le\frac{49}{12}\)
Vậy \(m\le\frac{49}{12}\)thì phương trình (1) có 2 nghiệm
pt có 2 nghiệm x1, x2\(\Leftrightarrow\Delta\ge0\)
\(\Leftrightarrow25-12\left(m-2\right)\ge0\Leftrightarrow25-12m+24\ge0\Leftrightarrow49-12m\ge0\)
\(\Leftrightarrow m\le\frac{12}{49}\)
Theo định lí vi-et ta có:
\(x_1+x_2=5\)
\(x_1.x_2=m\)
ĐK: 25 > hoặc = 4m
*|x1-x2|=3
Với x1>x2 =>x1-x2=3
=>*x1=3+x2
=>3+x2+x2=5
tự tìm x2
*x2=x1-3
thế vô tìm x1
rồi thế x1 ; x2 vô x1.x2=m xong
tượng tự với TH x1<x2