Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện để phương trình đã cho là phương trình đường tròn là:
m − 3 2 2 + 2 m + 1 2 2 − ( 3 m + 10 ) > 0 ⇔ m 2 − 6 m + 9 4 + 4 m 2 + 4 m + 1 4 − 3 m − 10 > 0 ⇔ 5 m 2 − 2 m + 10 4 − 3 m − 10 > 0 ⇔ 5 m 2 − 2 m + 10 − 12 m − 40 > 0 ⇔ 5 m 2 − 14 m − 30 > 0 ⇔ m < 7 − 199 5 m > 7 + 199 5
Với điều kiện trên phương trình đã cho là phương trình đường tròn có tâm I − m − 3 2 ; − 2 m + 1 2
Do tâm I nằm trên đường thẳng ∆: x + 2y + 5 = 0 nên ta có:
− m − 3 2 + 2. − 2 m + 1 2 + 5 = 0 ⇔ − ( m − 3 ) + 2 ( − 2 m − 1 ) + 2.5 = 0 ⇔ − m + 3 − 4 m − 2 + 10 = 0 ⇔ − 5 m + 11 = 0 ⇔ m = 11 5
Kết hợp điều kiện, suy ra không có giá trị nào của m thỏa mãn,
Chú ý. Nhiều học sinh quên điều kiện để phương trình là phương trình của một đường tròn nên dẫn đến kết quả m = 11/5
ĐÁP ÁN D
câu a
đường thẳng (d') là đường thẳng cần tìm
d' // d nên d' có dạng x-y +c = 0 với c khác 0
lấy điểm bất kì thuộc (d) là O(0,0) lấy đối xứng O qua M ta được O' ( 4, 2) vậy O' thuộc (d')
4−2+c=0⇒c=−2⇒(d′):x−y−2=0
Câu b
Viết pt đường thẳng (a) qua M và vuông góc với (d)
(a) cắt (d) tại đâu ta được hình chiếu H của M
a.
Phương trình có 2 nghiệm trái dấu khi và chỉ khi:
\(ac< 0\Leftrightarrow1.\left(2m+1\right)< 0\)
\(\Leftrightarrow m< -\dfrac{1}{2}\)
b.
Phương trình có 2 nghiệm nằm cùng phía trục Oy \(\Leftrightarrow\) phương trình có 2 nghiệm cùng dấu
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-\left(2m+1\right)>0\\x_1x_2=2m+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m>-\dfrac{1}{2}\end{matrix}\right.\)
b: \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x-4=2m-1\\x^2-3x-4=-2m+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2-3x-4-2m+1=0\\x^2-3x-4+2m-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x-2m+3=0\\x^2-3x+2m-5=0\end{matrix}\right.\)
Để phương trình có bốn nghiệm phân biệt thì \(\left\{{}\begin{matrix}9-4\left(-2m+3\right)>0\\9-4\left(2m-5\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9+8m-12>0\\9-8m+20>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8m>3\\8m< 29\end{matrix}\right.\Leftrightarrow\dfrac{3}{8}< m< \dfrac{29}{8}\)
(d) có vector chỉ phương là (1, -1) và vector pháp tuyến là (-1,1).
Đường thẳng đi qua M(2,1) và vuông góc với (d) có dạng:
\(\frac{x-2}{-1}=\frac{y-1}{1}\), hay là: x + y = 3
Hình chiếu của M trên (d) chính là giao điểm của 2 đường thẳng:
x + y = 3
x - y = 0
Giải hệ ra ta có x = y = 3/2
Vậy Hình chiếu là (3/2 ; 3/2)
Viết pt đường thẳng (a) qua M và vuông góc với (d)
(a) cắt (d) tại đâu ta được hình chiếu H của M
Gọi (P):y=x2-2mx+m+3 (D):y=x+2
Cho S là điểm thấp nhất của đồ thị hàm số (P)
xs=\(-\dfrac{b}{2a}=-\dfrac{-2m}{2.1}\)=m
yS=-delta/4=\(-\dfrac{b^2-4ac}{4a}=-\dfrac{\left(-2m\right)^2-4\left(m+3\right)}{4}=-\dfrac{4m^2-4m-12}{4}\)=-m2+m+3
Vậy tọa độ đỉnh là S(m;-m2+m+3)
Theo đề bài thì S thuộc (D) khi yS=xS+2
thế vào ta có -m2+m+3=m+2
tương đương: m2=1 suy ra m=1 (nhận) hoặc m=-1 (loại) vì m>0
Vậy hàm số (P):y=m2-2x+4