Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-\left(m-1\right)x+2m-6=0\) (1)
Để pt (1) có 2 nghiệm phân biệt thì:
\(\Delta=\left(1-m\right)^2-4\left(2m-6\right)=m^2-10m+25=\left(m-5\right)^2>0\)\(\Leftrightarrow\)\(m\ne5\)
\(x_1=\frac{m-1+\left|m-5\right|}{2}\) và \(x_2=\frac{m-1-\left|m-5\right|}{2}\)
Dễ dàng thấy \(x_1>x_2\) nên ta cần tìm m để \(x_1< -2019\)
\(\Leftrightarrow\)\(\frac{m-1+\left|m-5\right|}{2}< -2019\)
\(\Leftrightarrow\)\(\left|m-5\right|< -m-4037\)
\(\Leftrightarrow\)\(\hept{\begin{cases}-m-4037>0\\m^2-10m+25< m^2+8074m+4037^2\end{cases}\Leftrightarrow\hept{\begin{cases}m< -4037\\8084m>25-4037^2\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}m< -4037\\m>\frac{25-4037^2}{8084}\end{cases}\Leftrightarrow\hept{\begin{cases}m< -4037\\m>-2016\end{cases}}}\) ( vô lí )
Vậy không có m để pt (1) có ít nhất 1 nghiệm nhỏ hơn -2019
PS: ko chắc nhé, ai thấy lỗi sai thì ib giúp
4.
(1) => y=2m-mx thay vào (2) ta được x+m(2m-mx)=m+1
<=> x-m2x=-2m2+m+1
<=> x(1-m)(1+m)=-(m-1)(1+2m)
với m=-1 thì pt vô nghiệm
với m=1 thì pt vô số nghiệm => có nghiệm nguyên => chọn
với m\(\ne\pm\) 1 thì x=\(\frac{-2m-1}{m+1}\)=\(-2+\frac{1}{m+1}\)
=> y=2m-mx=xm-m(-2+\(\frac{1}{m+1}\)) =2m+2m-\(\frac{m}{m+1}\)=4m-1+\(\frac{1}{m+1}\)
để x y nguyên thì \(\frac{1}{m+1}\)nguyên ( do m nguyên)
=> m+1\(\in\)Ư(1)={1;-1}
=> m\(\in\){0;-2} mà m nguyên âm nên m=-2
vậy m=-2 thì ...
P/s hình như 1 2 3 sai đề
1>\(\Delta=b^2-4ac\)
\(=m^2-4\left(2m-1\right)\left(-m+1\right)\)
khai triển ra là được \(\left(3m-2\right)^2\ge0\)
=>phương trình luôn có ít nhất là một nghiệm
2>để phương trình có 2 nghiệm phân biệt thì \(\left(3m-2\right)^2>0\)=>\(3m-2>0\Rightarrow m>\frac{2}{3}\)
còn cần tìm x thì theo công thức mà tìm
3> thế vô mà tìm
xét m=0 thay vào ptr đã cho được x=-1 (loại)
xét m khác 0
ptr đã cho là ptr bậc 2 có 2 nghiệm phân biệt khi ∆ >0
<=> (m2+m+1)2-4m(m+1) >0
<=> (m2+m)2+2(m2+m) +1 -4(m2+m)>0
<=> (m2+m)2-2(m2+m)+1>0
<=> (m2+m-1)2>0
<=> m2+m-1 khác 0
<=> m khác \(\frac{-1\pm\sqrt{5}}{2}\)
Gọi x1, x2 là hai nghiệm phân biệt của ptr
=> \(\hept{\begin{cases}x1+x2=\frac{m^2+m+1}{m}\\x1.x2=\frac{m+1}{m}\end{cases}}\)(1)
Vì ptr đã cho có hai nghiệm khác -1 nên
{x1 # -1 và x2 #-1
=> (x1+1)(x2+1) # 0 và (x1+1) + (x2+1) # 0
=> x1.x2 +x1+x2+1 khác 0 và x1 +x2 +2 khác 0
thay (1) vào
Với \(m=0\) không thỏa mãn
Với \(m\ne0\) pt có 2 nghiệm pb khác -1 khi:
\(\left\{{}\begin{matrix}\Delta=\left(m^2+m+1\right)^2-4m\left(m+1\right)>0\\m+\left(m^2+m+1\right)+m+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+m\right)^2-2\left(m^2+m\right)+1>0\\m^2+3m+2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+m-1\right)^2>0\\m^2+3m+2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m-1\ne0\\m^2+3m+2\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne\dfrac{-1\pm\sqrt{5}}{2}\\m\ne-2\\m\ne-1;m\ne0\end{matrix}\right.\)
Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2+3\end{cases}}\)
\(A=m^2+3+2m+2=m^2+2m+5=\left(m+1\right)^2+4\ge4\)
Dấu ''='' xảy ra khi m = -1
Vậy GTNN A là 4 khi m =-1
\(\Delta=m^2-4.\left(-1\right)=m^2+4>0\)
\(\hept{\begin{cases}x_1=\frac{-m-\sqrt{m^2+4}}{2}\\x_2=\frac{-m+\sqrt{m^2+4}}{2}\end{cases}}\)
Để x1<2
\(\Rightarrow m+\sqrt{m^2+4}>-4\)
Có\(\sqrt{m^2+4}\ge\sqrt{4}=2\)
\(\Rightarrow m+2>-4\)
\(\Leftrightarrow m>-6\)
Vậy m>-6 để....