Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{c}{a}=-\frac{2}{2}=-1< 0\)
=> Phương trình luôn có 2 ngiệm trái dấu \(x_1;x_2\)
Theo định lí viet: \(x_1x_2=-1;x_1+x_2=\frac{1-m}{2}\)
Ta có: \(\left(x_1+\frac{1}{2}x^2_1-x^3_1\right)\left(x_2+\frac{1}{2}x^2_2-x^3_2\right)=4\)
<=> \(x_1x_2\left(x_1^2-\frac{1}{2}x_1-1\right)\left(x_2^2-\frac{1}{2}x_2-x_2\right)=4\)
<=> \(\left(2x_1^2-x_1-2\right)\left(2x_2^2-x_2-2\right)=-16\)
<=> \(\left(2x_1x_2\right)^2-2x_1^2x_2-4x_1^2-2x_1x_2^2+x_1x_2+2x_2-4x_2^2+2x_2+4=-16\)
<=> \(4+2x_1-4x_1^2+2x_2-1+2x_2-4x_2^2+2x_2+4=-16\)
<=> \(4x_1^2+4x_2^2-4x_1-4x_2=23\)
<=> \(4\left(x_1+x_2\right)^2-4\left(x_1+x_2\right)=15\)
<=> \(\orbr{\begin{cases}x_1+x_2=\frac{5}{2}\\x_1+x_2=-\frac{3}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1-m}{2}=\frac{5}{2}\\\frac{1-m}{2}=-\frac{3}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=-4\\m=4\end{cases}}\)
Vậy:....
Áp dụng hệ thức Vi-et,ta có :
\(\hept{\begin{cases}x_1+x_2=-3\\x_1x_2=-10\end{cases}}\)
Ta có : \(\frac{2x_1^2}{x_1+x_2}+2x_2=\frac{2x_1^2+2x_1x_2+2x_2^2}{x_1+x_2}=\frac{2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+2x_1x_2}{x_1+x_2}\)
\(=\frac{2\left[\left(-3\right)^2-2.\left(-10\right)\right]+2.\left(-10\right)}{-3}=\frac{-38}{3}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\sqrt{5}\\x_1x_2=1\end{matrix}\right.\)
\(A=\left(x_1+x_2\right)^2-5x_1x_2=\left(\sqrt{5}\right)^2-5.1=0\)
\(B=\frac{1}{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}=\frac{1}{\left(\sqrt{5}\right)^3-3.1.\sqrt{5}}=\frac{1}{2\sqrt{5}}\)
\(C=\frac{x_1+x_2}{x_1x_2}=\sqrt{5}\)
\(D=\frac{x_1^2+x_2^2}{\left(x_1x_2\right)^2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=\frac{5-2}{1^2}=3\)
\(E=\sqrt{x_1x_2}\left(\sqrt{x_1}+\sqrt{x_2}\right)\Rightarrow E^2=x_1x_2\left(x_1+x_2+2\sqrt{x_1x_2}\right)\)
\(\Rightarrow E^2=1\left(\sqrt{5}+2.1\right)\Rightarrow E=\sqrt{2+\sqrt{5}}\)
\(F=\frac{3\left(x_1+x_2\right)+5x_1x_2}{x_1x_2\left(x_1^2+x_2^2\right)}=\frac{3\left(x_1+x_2\right)-5x_1x_2}{x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]}=\frac{3\sqrt{5}-5}{3}\)
theo viet ta có
x1+x2=-3
x1.x2=-4
a) ta quy đồng đc
(x1+x2)/(x1.x2)=-3/(-4)=3/4
b) (x1+x2)^2 -2x1.x2=(-3)^2 - 2.(-4)=17
d) (x1+x2)^3 - 3x1x2(x1+x2)= (-3)^3 -3(-4)(-3)=-9
Xin lỗi bạn nha tại bàn phím mk đơ nên mk ko viết phân sô đc