\(x^2+3x-10=0\)

Không giải phương trình

a/ Chứng minh phương...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2020

Áp dụng hệ thức Vi-ét,ta có :

\(\hept{\begin{cases}x_1+x_2=\frac{m-1}{1}=m-1\\x_1x_2=\frac{2m-6}{1}=2m-6\end{cases}}\)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=\frac{5}{2}\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{5}{2}\)

\(\Leftrightarrow\frac{\left(m-1\right)^2-2\left(2m-6\right)}{2m-6}=\frac{m^2-6m+13}{2m-6}=\frac{5}{2}\)

\(\Leftrightarrow2m^2-12m+26=10m-30\Leftrightarrow2m^2-22m+56=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=4\\m=7\end{cases}}\)

Vây .....

20 tháng 4 2020

Bài giải 

Ta có : \(\hept{\begin{cases}x_1.x_2=m^2+3\\x_1+x_2=2\left(m+1\right)\end{cases}}\)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{8}{x_1.x_2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=\frac{8}{x_1.x_2}\)

<=> ( x1 + x2 ) 2 -2x1x2 = 8

<=>4(m+1)2 -2(m2+ 3 ) = 8 <=> 2m2 + 8m - 10=0

<=> \(\orbr{\begin{cases}m=1\\m=-5\left(L\right)\end{cases}}\)

29 tháng 4 2020

Áp dụng hệ thức Vi-et,ta có :

\(\hept{\begin{cases}x_1+x_2=-3\\x_1x_2=-10\end{cases}}\)

Ta có : \(\frac{2x_1^2}{x_1+x_2}+2x_2=\frac{2x_1^2+2x_1x_2+2x_2^2}{x_1+x_2}=\frac{2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+2x_1x_2}{x_1+x_2}\)

\(=\frac{2\left[\left(-3\right)^2-2.\left(-10\right)\right]+2.\left(-10\right)}{-3}=\frac{-38}{3}\)

\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+3\right)\)

= 4(m + 1)2 - 4m2 - 12

= 4m2 + 8m + 4 - 4m2 - 12 = 8m - 8

Để pt có 2 nghiệm thì \(\Delta\ge0\) <=> 8m - 8 \(\ge\)0

<=> 8(m - 1) \(\ge\) 0

<=> m -1 \(\ge\)0

<=> m \(\ge\) 1

Theo vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)=2m+2\\x_1.x_2=m^2+3\end{cases}}\)

Theo đề ta có: \(\frac{x1}{x2}+\frac{x2}{x1}=\frac{8}{x1.x2}\)

ĐK: x1, x2 \(\ne\)0 => \(\hept{\begin{cases}x1+x2\ne0\\x1.x2\ne0\end{cases}}hay\hept{\begin{cases}2m+2\ne0\\m^2+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\ne-1\\m^2\ne-3\end{cases}}\Leftrightarrow m\ne-1\) 

<=> \(\frac{\left(x_1\right)^2+\left(x_2\right)^2}{x1.x2}=\frac{8}{x1.x2}\)

=> \(\left(x_1\right)^2+\left(x_2\right)^2=8\)

<=> \(\left(x_1+x_2\right)^2-2.x_1.x_2=8\)

Hay (2m + 2)2 - 2(m2 + 3) = 8

<=> 4m2 + 8m + 4 - 2m2 - 6 = 8

<=> 2m2 + 8m - 10 = 0

a + b + c = 2 + 8 + (-10) = 0

=> m = 1 (tmđk) và m = \(\frac{c}{a}=-5\)(ktmđk)

Vậy m = 1 thì ....

Gửi link fb cho mình để mình gửi đáp án cho
9 tháng 3 2019

Phương thảo nhé

30 tháng 3 2018

Ta có:

\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-2m\end{cases}}\)

Gọi S, P là tổng và tích 2 nghiệm của phương trình cần tìm thì ta có

\(S=\frac{1}{x_1+1}+\frac{1}{x_2+1}=\frac{x_1+x_2+2}{x_1x_2+x_1+x_2+1}=\frac{2+2}{-2m+2+1}=\frac{4}{3-2m}\)

\(P=\frac{1}{x_1+1}.\frac{1}{x_2+1}=\frac{1}{x_1x_2+x_1+x_2+1}=\frac{1}{-2m+2+1}=\frac{1}{3-2m}\)

Phương trình cần tìm là: 

\(X^2-\frac{4}{3-2m}X+\frac{1}{3-2m}=0\)

30 tháng 3 2018

phải tìm điều kiện để phương trình có 2 nghiệm x1,x2

17 tháng 4 2019

dầu tiên bn tìm đenta phẩy

sau đó cm nó lớn hơn 0

theo hệ thức viet tính đc x1+x2=... và x1*x2=....

thay vào hệ thức đã cho tính đc ..