\(x^2+2\left(m-2\right)x-m^2=0\) , với , là tham số .

1) G...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2019

cho phương trình x2(m+2)x+3m3=0  với x là ẩn, m là tham số 

15 tháng 2 2019

a,Với m = -1 thì pt trở thành

\(x^2-\left(-1+2\right)x+3\left(-1\right)-3=0\)

\(\Leftrightarrow x^2-x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

b, Vì pt có 2 nghiệm x1 ; x2 là độ dài 2 cạnh góc vuông nên x1 ; x2 > 0 hay pt có 2 nghiệm dương 

Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(m+2\right)^2-4\left(3m-3\right)>0\\m+2>0\\3m-3>0\end{cases}}\)

                             \(\Leftrightarrow\hept{\begin{cases}m^2+4m+4-12m+12>0\\m>1\end{cases}}\)

                             \(\Leftrightarrow\hept{\begin{cases}m^2-8m+16>0\\m>1\end{cases}}\)

                             \(\Leftrightarrow\hept{\begin{cases}\left(m-4\right)^2>0\\m>1\end{cases}}\)

                            \(\Leftrightarrow\hept{\begin{cases}m>1\\m\ne4\end{cases}}\)

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=m+2\\x_1x_2=3m-3\end{cases}}\)
Vì x1 ; x2 là độ dài 2 cạnh góc vuông của tam giác vuông có độ dài cạnh huyền bằng 5

\(\Rightarrow x_1^2+x_2^2=25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\)

\(\Leftrightarrow\left(m+2\right)^2-2\left(3m-3\right)=25\)

\(\Leftrightarrow m^2+4m+4-6m+6=25\)

\(\Leftrightarrow m^2-2m-15=0\)

\(\Leftrightarrow\left(m-5\right)\left(m+3\right)=0\)

\(\Leftrightarrow m=5\left(Do\text{ }\hept{\begin{cases}m>1\\m\ne4\end{cases}}\right)\)

Vậy m = 5

28 tháng 6 2020

Theo hệ thức vi ét thì : \(x_1.x_2=m+8\)

\(< =>\hept{\begin{cases}x_1=\frac{m+8}{x_2}\\x_2=\frac{m+8}{x_1}\end{cases}}\)

Khi đó : \(\left(\frac{m+8}{x_2}\right)^3-\frac{m+8}{x_1}=0\)

\(< =>\frac{\left(m+8\right)^3}{x_2^3}-\frac{m+8}{x_1}=0\)

\(< =>\left(m+8\right)\left(\frac{\left(m+8\right)^2}{x_2^3}-\frac{1}{x_1}\right)=0\)

\(< =>\orbr{\begin{cases}m=-8\\\frac{m^2+16m+64}{x_2^3}=\frac{1}{x_1}\left(+\right)\end{cases}}\)

\(\left(+\right)< =>m^2.x_1+16m.x_1+64x_1=x_2^3\)

Tự giải tiếp :D

2 tháng 5 2017

để phương trình có 2 nghiệm phân biệt thì delta' > 0 \(\Leftrightarrow\left(m-2\right)^2+m^2>0\)ta được 1 phương trình luôn lớn hơn 0 vơi mọi m 

áp dụng hệ thức viet vào phương trình ta được \(\hept{\begin{cases}x1+x2=-2\left(m-2\right)\\x1.x2=-m^2\end{cases}}\)

ta có |x1|-|x2|=6 \(\Leftrightarrow\)x12+x22-2|x1.x2|-6=0 \(\Leftrightarrow\)(x1+x2)2-2x1x2-2|x1x2|-6=0 \(\Leftrightarrow\left(-2\left(m-2\right)\right)^2+2m^2-2\left|-m^2\right|-6=0\)

 giải phương trình có chứa dâu giá trị tuyệt đối rồi đối chiếu với điều kiện để chọn và tìm m phù hợp