K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 7 2020

1.

Ta có: \(m^2+\left(m-1\right)^2=2m^2-2m+1=\frac{1}{2}\left(2m-1\right)^2+\frac{1}{2}>0;\forall m\)

\(\Rightarrow\) Với mọi m pt đã cho là pt đường tròn

2.

\(R=\sqrt{\frac{1}{2}\left(2m-1\right)^2+\frac{1}{2}}\)

\(\Rightarrow R\ge\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}\)

\(R_{min}=\frac{\sqrt{2}}{2}\) khi \(m=\frac{1}{2}\)

3.

Đường tròn tâm \(I\left(x_I;y_I\right)\Rightarrow\left\{{}\begin{matrix}x_I=m\\y_I=m-1\end{matrix}\right.\)

\(\Rightarrow x_I-y_I=1\Leftrightarrow x_I-y_I-1=0\)

\(\Rightarrow\) Tập hợp tâm I là đường thẳng có pt \(x-y-1=0\)

4.

Gọi \(M\left(x;y\right)\) là điểm cố định mà đường tròn đi qua

\(\Rightarrow x^2+y^2-2mx-2my+2y=0\)

\(\Leftrightarrow x^2+y^2+2y-2m\left(x+y\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+2y=0\\x+y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2+y^2+2y=0\\y=-x\end{matrix}\right.\)

\(\Rightarrow x^2+\left(-x\right)^2-2x=0\)

\(\Leftrightarrow x^2-x=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x=1\Rightarrow y=-1\end{matrix}\right.\)

\(\Rightarrow\) Đường tròn luôn đi qua 2 điểm cố định có tọa độ \(\left(0;0\right);\left(1;-1\right)\)

5.

Phương trình hoành độ giao điểm:

\(\left\{{}\begin{matrix}x^2+y^2-2mx-2\left(m-1\right)y=0\\x+y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-2mx-2\left(m-1\right)y=0\\y=1-x\end{matrix}\right.\)

\(\Rightarrow x^2+\left(1-x\right)^2-2mx-2\left(m-1\right)\left(1-x\right)=0\)

\(\Leftrightarrow2x^2-2x+1-2mx-\left(2m-2\right)\left(1-x\right)=0\)

\(\Leftrightarrow2x^2-4x-2m+3=0\)

\(\Delta'=4-2\left(-2m+3\right)=4m-2=0\Rightarrow m=\frac{1}{2}\)

NV
19 tháng 1 2022

Giả sử đường tròn đi qua điểm cố định có tọa độ \(\left(x_0;y_0\right)\)

\(\Rightarrow\) Với mọi m ta luôn có:

\(x_0^2+y_0^2+\left(m+2\right)x_0-\left(m+4\right)y_0+m+1=0\)

\(\Leftrightarrow m\left(x_0-y_0+1\right)+\left(x_0^2+y_0^2+2x_0-4y_0+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0-y_0+1=0\\x_0^2+y_0^2+2x_0-4y_0+1=0\end{matrix}\right.\)

\(\Rightarrow x_0^2+\left(x_0+1\right)^2+2x_0-4\left(x_0+1\right)+1=0\)

\(\Rightarrow2x_0^2-2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x_0=1\Rightarrow y_0=2\\x_0=-1\Rightarrow y_0=0\end{matrix}\right.\)

Vậy đường tròn luôn đi qua 2 điểm cố định có tọa độ \(\left(1;2\right);\left(-1;0\right)\) với mọi m

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Ta có \(I\left( {2; - 3} \right)\) và \(R = \sqrt {{2^2} + {{\left( { - 3} \right)}^2} - \left( { - 12} \right)}  = 5\)

b) Ta có: \({5^2} + {1^2} - 4.5 + 6.1 - 12 = 0\). Suy ra M thuộc \(\left( C \right)\). Tiếp tuyến d của (C) tại M có vectơ pháp tuyến là \(\overrightarrow {{n_d}}  = \overrightarrow {IM}  = \left( {3;4} \right)\), đồng thời d đi qua điểm \(M\left( {5;1} \right)\).

Vậy phương trình  của d là  \(3\left( {x - 5} \right) + 4\left( {y - 1} \right) = 0 \Leftrightarrow 3x + 4y - 19 = 0\).

31 tháng 3 2018

Giải bài 7 trang 93 sgk Hình học 10 | Để học tốt Toán 10

Gọi A, B là hai tiếp điểm của tiếp tuyến kẻ từ M đến (C).

Giải bài 7 trang 93 sgk Hình học 10 | Để học tốt Toán 10

Mà điểm I là cố định nên tập hợp các điểm M là đường tròn tâm I, bán kính R = 6 và có phương trình: (x – 1)2 + (y – 2)2 = 36.

24 tháng 4 2023

\(PT\left(C\right):\left(x+1\right)^2+\left(y-7\right)^2=85\)

\(\Rightarrow\) Tâm \(I\left(-1;7\right)\) và bán kính là \(\sqrt{85}\)

PT tiếp tuyến qua \(M\left(1;-2\right)\Rightarrow x_0=1,y_0=-2\)

\(PT\) tiếp tuyến có dạng \(\left(a-x_0\right)\left(x-x_0\right)+\left(b-y_0\right)\left(y-y_0\right)=0\)

\(\Leftrightarrow\left(-1-1\right)\left(x-1\right)+\left(7+2\right)\left(y+2\right)=0\)

\(\Leftrightarrow-2\left(x-1\right)+9\left(y+2\right)=0\)

\(\Leftrightarrow-2x+2+9y+18=0\)

\(\Leftrightarrow-2x+9y+20=0\)

 

12 tháng 12 2018

Đáp án C

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Phương trình đường tròn là: \({\left( {x + 3} \right)^2} + {\left( {y - 4} \right)^2} = 81\)

b) Bán kính đường tròn là: \(R = IM = \sqrt {{{\left( {4 - 5} \right)}^2} + {{\left( { - 1 + 2} \right)}^2}}  = \sqrt 2 \)

Phương trình đường tròn là: \({\left( {x - 5} \right)^2} + {\left( {y + 2} \right)^2} = 2\)

c) Bán kính đường tròn là: \(R = \frac{{\left| {5.1 - 12.\left( { - 1} \right) - 1} \right|}}{{\sqrt {{5^2} + {{\left( { - 12} \right)}^2}} }} = \frac{{16}}{{13}}\)

Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = {\left( {\frac{{16}}{{13}}} \right)^2}\)

d) Gọi \(I\left( {a;b} \right)\) là trung điểm AB. Vậy tọa độ điểm I là: \(I\left( {1;1} \right)\)

Bán kính đường tròn là: \(R = IA = \sqrt {{{\left( {3 - 1} \right)}^2} + {{\left( { - 4 - 1} \right)}^2}}  = \sqrt {29} \)

Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 29\)

e) Giả sử  tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\)

Vì \(I{A^2} = I{B^2},I{B^2} = I{C^2}\) nên: \(\left\{ \begin{array}{l}{\left( {1 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2}\\{\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {0 - a} \right)^2} + {\left( {4 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right.\)  b

Vậy \(I\left( {2;3} \right)\) và \(R = IA = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}}  = \sqrt 5 \)

Vậy phương trình đường tròn đi qua 3 điểm A,B, C là: \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 5\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

10 tháng 4 2018

a) x2 + y2 – 4x + 8y – 5 = 0

⇔ (x2 – 4x + 4) + (y2 + 8y + 16) = 25

⇔ (x – 2)2 + (y + 4)2 = 25.

Vậy (C) có tâm I(2 ; –4), bán kính R = 5.

b) Thay tọa độ điểm A vào phương trình đường tròn ta thấy:

(–1 – 2)2 + (0 + 4)2 = 32 + 4= 52= R2

⇒ A thuộc đường tròn (C)

⇒ tiếp tuyến (d’) cần tìm tiếp xúc với (C) tại A

⇒ (d’) là đường thẳng đi qua A và vuông góc với IA

⇒ (d’) nhận Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10 là một vtpt và đi qua A(–1; 0)

⇒ phương trình (d’): 3(x + 1) – 4(y - 0)= 0 hay 3x – 4y + 3 = 0.

c) Gọi tiếp tuyến vuông góc với (d) : 3x – 4y + 5 = 0 cần tìm là (Δ).

(d) có Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10 là một vtpt; 1 VTCP là ud(4; 3)

(Δ) ⊥ (d) ⇒ (Δ) nhận Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10 là một vtpt

⇒ (Δ): 4x + 3y + c = 0.

(C) tiếp xúc với (Δ) ⇒ d(I; Δ) = R

Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10

Vậy (Δ) : 4x + 3y + 29 = 0 hoặc 4x + 3y – 21 = 0.