\(x^2-mx+m-1=0\)

a) tìm m để phương trình luôn có 2 ngiệm phân bi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

xét pt \(x^2-mx+m-1=0\)  \(\left(1\right)\)

xó \(\Delta=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\forall m\ne2\)

\(\Rightarrow pt\)  (1) có 2 nghiệm phân biệt \(x_1,x_2\forall m\ne2\)

ta có vi -ét \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)

theo bài ra \(\left|x_1\right|+\left|x_2\right|=6\)

\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=36\)

\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=36\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=36\)

\(\Leftrightarrow m^2-2\left(m-1\right)+2\left|m-1\right|=36\)

nếu \(m-1< 0\Rightarrow m^2-4m-32=0\)  ta tìm được \(m=8\left(loai\right)\)\(m=-4\left(TM\right)\)

nếu \(m-1\ge0\Rightarrow m^2=36\Rightarrow m=6\left(TM\right);m=-6\left(loai\right)\)

vậy \(m=-4;m=6\)  là các giá trị cần tìm 

10 tháng 5 2018

b) \(P=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2+2}\)

\(P=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2\left(m-1\right)+3}{m^2+2}\)

\(P=\frac{2m-2+3}{m^2+2}=\frac{2m+1}{m^2+2}\)

vậy \(P=\frac{2m+1}{m^2+2}\)

5 tháng 5 2016

đen ta = m^2-4m+4>0

=>pt luôn có 2 nghiệm

Áp dụng viét  ta được

x1+x2=m

x1*x2=m-1

=>A=(2m+3)/((x1+x2)^2+2)=(2m+3)/((m-1)^2+2))

rồi tìm max ra

6 tháng 5 2016

bạn tìm max giúp mình vs

31 tháng 5 2021

Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2+3\end{cases}}\)

\(A=m^2+3+2m+2=m^2+2m+5=\left(m+1\right)^2+4\ge4\)

Dấu ''='' xảy ra khi m = -1 

Vậy GTNN A là 4 khi m =-1 

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)

15 tháng 4 2016

\(\ast\Delta>0\Leftrightarrow m^2-4.1005m>0\Leftrightarrow m<0\text{ hoặc }m>4020\)

\(\ast x_1.x_2=1005m;\text{ }x_1+x_2=m\)

\(P=\frac{2x_1.x_2+2680}{\left(x_1+x_2\right)^2+1}=\frac{2010m+2680}{m^2+1}=670.\frac{3m+4}{m^2+1}\)

\(=670.\left(\frac{3m+4}{m^2+1}+\frac{1}{2}\right)-\frac{670}{2}=670.\frac{m^2+1+2\left(3m+4\right)}{2\left(m^2+1\right)}-335\)

\(=335.\frac{\left(m+3\right)^2}{m^2+1}-335\ge-335\)

Dấu bằng xảy ra khi \(m+3=0\Leftrightarrow m=-3\text{ }\left(\text{thỏa}\right)\)

Vậy \(m=-3\)