Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình \(x^2-mx+1005m=0\) có \(\Delta=m^2-4.1005m=m^2-4020m\)
Do pt có hai nghiệm nên \(\Delta\ge0\Leftrightarrow\left[{}\begin{matrix}m\le0\\m\ge4020\end{matrix}\right.\)
Theo hệ thức Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=1005m\end{matrix}\right.\)
\(\Rightarrow M=\dfrac{2.1005m+2680}{m^2+1}=\dfrac{2010m+2680}{m^2+1}\)
\(=335\left(\dfrac{\left(m+3\right)^2}{m^2+1}-1\right)\ge-335\)
Vậy minM = -335, khi m = -3.
\(\Delta^`\ge0\)
\(\Leftrightarrow m^2-\left(m^2-2\right).2\ge0\)
\(\Leftrightarrow4-m^2\ge0\)
\(\Leftrightarrow4\ge m^2\)
\(\Leftrightarrow4\ge m^2\)
\(\Leftrightarrow-2\le m\le2\)
Theo hệ thức Viet có:
\(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=\frac{m^2-2}{2}\end{cases}}\)
\(\Rightarrow A=\left|2x_1.x_2-x_1-x_2-4\right|=\left|m^2-m-6\right|=\left|\left(m-\frac{1}{2}\right)^2-6,25\right|\)
Có:
\(\left(m-\frac{1}{2}\right)^2\le\left(-2-\frac{1}{2}\right)^2=6,25\)
\(\Rightarrow A=\left|\left(m-\frac{1}{2}\right)^2-6,25\right|=6,25-\left(m-\frac{1}{2}\right)^2\le6,25\)
\(A=6,25\Leftrightarrow m=\frac{1}{2}\left(tm\right)\)
KL:..............................................
\(\ast\Delta>0\Leftrightarrow m^2-4.1005m>0\Leftrightarrow m<0\text{ hoặc }m>4020\)
\(\ast x_1.x_2=1005m;\text{ }x_1+x_2=m\)
\(P=\frac{2x_1.x_2+2680}{\left(x_1+x_2\right)^2+1}=\frac{2010m+2680}{m^2+1}=670.\frac{3m+4}{m^2+1}\)
\(=670.\left(\frac{3m+4}{m^2+1}+\frac{1}{2}\right)-\frac{670}{2}=670.\frac{m^2+1+2\left(3m+4\right)}{2\left(m^2+1\right)}-335\)
\(=335.\frac{\left(m+3\right)^2}{m^2+1}-335\ge-335\)
Dấu bằng xảy ra khi \(m+3=0\Leftrightarrow m=-3\text{ }\left(\text{thỏa}\right)\)
Vậy \(m=-3\)
Xét pt đã cho có \(\Delta=m^2-4.1.\left(-m-1\right)=m^2+4m+4=\left(m+2\right)^2\ge0\)với mọi \(m\inℝ\)
Vậy pt đã cho luôn có 2 nghiệm với mọi \(m\inℝ\)
Theo định lí Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=-\frac{-m}{1}=m\\x_1x_2=\frac{-m-1}{1}=-m-1\end{cases}}\)
Lại có \(\left|x_1-x_2\right|\ge3\)\(\Leftrightarrow\left(x_1-x_2\right)^2\ge9\)(vì cả 2 vế của BĐT đầu đều lớn hơn 0)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge9\)\(\Leftrightarrow m^2-4\left(-m-1\right)\ge9\)\(\Leftrightarrow m^2+4m+4\ge9\)\(\Leftrightarrow\left(m+2\right)^2\ge9\)\(\Leftrightarrow\orbr{\begin{cases}m+2\ge3\\m+2\le-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}m\ge1\\m\le-5\end{cases}}\)
Vậy các giá trị của m để pt có 2 nghiệm x1, x2 thỏa mãn \(\left|x_1-x_2\right|\ge3\)là \(\orbr{\begin{cases}m\ge1\\m\le-5\end{cases}}\)
Áp dụng hệ thức Vi-et, ta có :
\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=-\left(2m+3\right)\end{cases}}\)
Đặt \(A=\left|\frac{x_1+x_2}{x_1-x_2}\right|\ge0\). A đạt giá trị nhỏ nhất \(\Leftrightarrow A^2\)đạt giá trị nhỏ nhất.
Ta có : \(A^2=\left(\frac{x_1+x_2}{x_1-x_2}\right)^2=\frac{\left(x_1+x_2\right)^2}{\left(x_1+x_2\right)^2-4x_1.x_2}=\frac{4\left(m+1\right)^2}{4\left(m+1\right)^2+4\left(2m+3\right)}=\frac{4\left(m+1\right)^2}{4m^2+16m+16}=\frac{\left(m+1\right)^2}{\left(m+2\right)^2}\ge0\)
Suy ra \(MinA^2=0\Leftrightarrow m=-1\)
Vậy Min A = 0 \(\Leftrightarrow\)m = -1
ở bài này phải chỉ ra \(\Delta'\)lớn hơn hoặc bằng 0 , hoặc chỉ ra a và c trái dấu nên phương trình có 2 nghiệm x1,x2 thì mới được áp dụng hệ thức Viét