Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để phương trình có hai nghiệm trái dấu thì m+2<0
hay m<-2
Phương trình đã cho có hai nghiệm phân biệt khi
\(\Delta'=\left(m+1\right)^2-\left(m^2+2\right)=2m-1>0\Leftrightarrow m>\dfrac{1}{2}\)
Theo định lí Viet: \(x_1+x_2=2m+2;x_1x_2=m^2+2\)
Khi đó \(x_1^3+x_2^3=2x_1x_2\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-5x_1x_2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(2m+2\right)^3-5\left(m^2+2\right)\left(2m+2\right)=0\)
\(\Leftrightarrow m^3-7m^2-2m+6=0\)
\(\Leftrightarrow\left(m+1\right)\left(m^2-8m+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\left(l\right)\\m=4\pm\sqrt{10}\left(tm\right)\end{matrix}\right.\)
a) Với m = 1 phương trình trở thành:
x 2 + 4x + 4 = 0 ⇔ (x + 2 ) 2 = 0 ⇔ x = -2
Vậy x = -2
b) Ta có: Δ' = m 2 - 5m + 4
Phương trình có hai nghiệm phân biệt
⇔ Δ' > 0 ⇔ m 2 - 5m + 4 > 0
Do x1 < x2 < 1
Lời giải:
Để pt có 2 nghiệm thì:
\(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m+1)^2-m(m+5)=1-3m\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m\leq\frac{1}{3}\end{matrix}\right.(1)\)
Áp dụng định lý Viet:
\(\left\{\begin{matrix} x_1+x_2=\frac{2(m+1)}{m}\\ x_1x_2=\frac{m+5}{m}\end{matrix}\right.\)
Để $x_1< 0< x_2$
$\Leftrightarrow x_1x_2< 0$
$\Leftrightarrow \frac{m+5}{m}< 0$
$\Leftrightarrow -5< m< 0(2)$
$x_1< x_2< 2$
\(\Leftrightarrow \left\{\begin{matrix} (x_1-2)(x_2-2)>0\\ x_1+x_2<4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_1x_2-2(x_1+x_2)+4>0\\ x_1+x_2<4\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{m+1}{m}>0\\ \frac{1-m}{m}< 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m>1\\ m< -1\end{matrix}\right.(3)\)
Từ $(1);(2);(3)$ suy ra $-5< m< -1$
a. Với \(m=0\Rightarrow-x-1=0\Rightarrow x=-1\) pt có nghiệm (ktm)
Với \(m\ne0\) pt vô nghiệm khi:
\(\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\)
\(\Leftrightarrow\left(m-1\right)\left(-3m-1\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
b. Phương trình có 2 nghiệm trái dấu khi \(ac< 0\)
\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)
c. Từ câu a ta suy ra pt có 2 nghiệm khi \(\left\{{}\begin{matrix}m\ne0\\-\dfrac{1}{3}\le m\le1\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-m}{m}\\x_1x_2=\dfrac{m-1}{m}\end{matrix}\right.\)
\(x_1^2+x_2^2-3>0\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3>0\)
\(\Leftrightarrow\left(\dfrac{1-m}{m}\right)^2-2\left(\dfrac{m-1}{m}\right)-3>0\)
Đặt \(\dfrac{m-1}{m}=t\Rightarrow t^2-2t-3>0\Rightarrow\left[{}\begin{matrix}t>3\\t< -1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-1}{m}>3\\\dfrac{m-1}{m}< -1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{-2m-1}{m}>0\\\dfrac{2m-1}{m}< 0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)
Kết hợp điều kiện có nghiệm \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}\le m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)
a: Δ=(2m-1)^2-4(m-1)
=4m^2-4m+1-4m+4
=4m^2-8m+5
=4m^2-8m+4+1=(2m-2)^2+1>=1>0 với mọi m
=>PT luôn có 2 nghiệm với mọi m
b: x1^3+x2^3=2m^2-m
=>(x1+x2)^3-3x1x2(x1+x2)=2m^2-m
=>(2m-1)^3-3(m-1)(2m-1)=2m^2-m
=>8m^3-12m^2+6m-1-3(2m^2-3m+1)-2m^2+m=0
=>8m^3-14m^2+7m-1-6m^2+9m-3=0
=>8m^3-20m^2+16m-4=0
=>m=1/2 hoặc m=1
\(\text{Δ}=\left(-m\right)^2-4\left(m-1\right)\)
\(=m^2-4m+4\)
\(=\left(m-2\right)^2\)>=0 với mọi m
=>Phương trình luôn có hai nghiệm
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-m\right)}{1}=m\\x_1x_2=\dfrac{c}{a}=\dfrac{m-1}{1}=m-1\end{matrix}\right.\)
\(x_1^2+x_2^2=5\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2=5\)
=>\(m^2-2\left(m-1\right)-5=0\)
=>\(m^2-2m-3=0\)
=>(m-3)(m+1)=0
=>\(\left[{}\begin{matrix}m-3=0\\m+1=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)
a/ Bạn tự giải
b/ \(\Delta=m^2-8\left(m-2\right)=m^2-8m+16=\left(m-4\right)^2\ge0;\forall m\)
\(\Rightarrow\) Pt luôn có nghiệm với mọi m
c/ Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-4\end{matrix}\right.\)
Kết hợp Viet và điều kiện đề bài ta được:
\(\left\{{}\begin{matrix}2x_1+3x_2=5\\x_1+x_2=m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x_1+3x_2=5\\3x_1+3x_2=3m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=3m-5\\x_2=-2m+5\end{matrix}\right.\)
Thế vào \(x_1x_2=2m-4\) được:
\(\left(3m-5\right)\left(-2m+5\right)=2m-4\)
\(\Leftrightarrow6m^2-23m+21=0\Rightarrow\left[{}\begin{matrix}m=\frac{7}{3}\\m=\frac{3}{2}\end{matrix}\right.\)