Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\text{Δ}=\left(m-1\right)^2-4\cdot1\cdot\left(-m\right)=\left(m+1\right)^2>=0\)
=>(5) luôn có nghiệm
b: \(x_1^2+x_2^2-2x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(m-1\right)^2-4\cdot\left(-m\right)-\left(-m\right)^2=2m+1\)
=>\(m^2-2m+1+4m-m^2=2m+1\)
=>2m+1=2m+1(luôn đúng)
Cho phương trình: x2 - (2m - 1)x - m = 0
Co \(\Delta=\left(-\left(2m-1\right)\right)^2-4.1.\left(-m\right)=4m^2-4m+1+4m=4m^2+1>0\)
Vi \(\Delta>0\) nen PT luon co ngiem phan biet voi moi gia tri cua m
Lời giải:
Vì \(\Delta=(m+1)^2-4m=(m-1)^2\geq 0, \forall m\in\mathbb{R}\) nên pt luôn có nghiệm với mọi $m$
Bây giờ phản chứng, giả sử pt có thể có hai nghiệm dương $x_1,x_2$.
Theo định lý Viete ta có: \(\left\{\begin{matrix} x_1+x_2=-(m+1)\\ x_1x_2=m\end{matrix}\right.\)
Khi $x_1,x_2>0$ thì \(\left\{\begin{matrix} x_1+x_2=-(m+1)>0\\ x_1x_2=m>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m<-1\\ m>0\end{matrix}\right.\) (vô lý)
Do đó pt không thể có hai nghiệm dương với mọi $m$
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
\(Q=2017x_1-2016x_1x_2+2017x_2-2018x_1x_2\)
\(=2017\left(x_1+x_2\right)-4034x_1x_2\)
\(=2017\left(2m+2\right)-4034\left(m-3\right)\)
=4034m+4034-4034m+12102
=16136
Ta có x1x2 = -1
=> x1 = -\(\frac{1}{x_2}\)
=> x1 - x2 = x1 + \(\frac{1}{x_1}\)
x1 > 0 thì
x1 + \(\frac{1}{x_1}\) >= 2\(\sqrt{x_1\frac{1}{x_1}}\)= 2
x1 < 0 thì
x1 + \(\frac{1}{x_1}\) <= -2\(\sqrt{x_1\frac{1}{x_1}}\)= -2
Vậy: |x1-x2| >= 2
Trước khi làm hình như phải cm pt có nghiệm?
( a = 1, b = -m, c = -1)
\(\Delta=b^2-4ac\)
\(=\left(-m\right)^2-4.1.\left(-1\right)\)
\(=m^2+4>0\forall m\)
Vậy pt luôn có 2 nghiệm pb với mọi m