Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho phương trình x2−(m+2)x+3m−3=0 với x là ẩn, m là tham số
a,Với m = -1 thì pt trở thành
\(x^2-\left(-1+2\right)x+3\left(-1\right)-3=0\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
b, Vì pt có 2 nghiệm x1 ; x2 là độ dài 2 cạnh góc vuông nên x1 ; x2 > 0 hay pt có 2 nghiệm dương
Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(m+2\right)^2-4\left(3m-3\right)>0\\m+2>0\\3m-3>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m^2+4m+4-12m+12>0\\m>1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m^2-8m+16>0\\m>1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m-4\right)^2>0\\m>1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m>1\\m\ne4\end{cases}}\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=m+2\\x_1x_2=3m-3\end{cases}}\)
Vì x1 ; x2 là độ dài 2 cạnh góc vuông của tam giác vuông có độ dài cạnh huyền bằng 5
\(\Rightarrow x_1^2+x_2^2=25\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\)
\(\Leftrightarrow\left(m+2\right)^2-2\left(3m-3\right)=25\)
\(\Leftrightarrow m^2+4m+4-6m+6=25\)
\(\Leftrightarrow m^2-2m-15=0\)
\(\Leftrightarrow\left(m-5\right)\left(m+3\right)=0\)
\(\Leftrightarrow m=5\left(Do\text{ }\hept{\begin{cases}m>1\\m\ne4\end{cases}}\right)\)
Vậy m = 5
\(\Delta=\left(m+3\right)^2-4\left(m-1\right)=\left(m+1\right)^2+12>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=m-1\end{matrix}\right.\)
\(x_1< -\dfrac{1}{4}< x_2\Leftrightarrow\left(x_1+\dfrac{1}{4}\right)\left(x_2+\dfrac{1}{4}\right)< 0\)
\(\Leftrightarrow x_1x_2+\dfrac{1}{4}\left(x_1+x_2\right)+\dfrac{1}{16}< 0\)
\(\Leftrightarrow m-1+\dfrac{1}{4}\left(m+3\right)+\dfrac{1}{16}< 0\)
\(\Leftrightarrow20m-3< 0\Rightarrow m< \dfrac{3}{20}\)