\(x^2-\left(m+5\right)x+3m+6=0\)

Tìm m để phương trình có 2 nghiệ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 3 2022

\(\Delta=\left(m+5\right)^2-4\left(3m+6\right)=m^2-2m+1=\left(m-1\right)^2\ge0\) ;\(\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\) 

Do \(x_1;x_2\) là độ dài 2 cạnh tam giác nên \(x_1>0;x_2>0\)

\(\Rightarrow\left\{{}\begin{matrix}m+5>0\\3m+6>0\end{matrix}\right.\) \(\Rightarrow m>-2\)

Khi đó, áp dụng định lý Pitago:

\(x_1^2+x_2^2=5^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\)

\(\Leftrightarrow\left(m+5\right)^2-2\left(3m+6\right)=25\)

\(\Leftrightarrow m^2+4m-12=0\Rightarrow\left[{}\begin{matrix}m=-6< -2\left(loại\right)\\m=2\end{matrix}\right.\)

15 tháng 2 2019

cho phương trình x2(m+2)x+3m3=0  với x là ẩn, m là tham số 

15 tháng 2 2019

a,Với m = -1 thì pt trở thành

\(x^2-\left(-1+2\right)x+3\left(-1\right)-3=0\)

\(\Leftrightarrow x^2-x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

b, Vì pt có 2 nghiệm x1 ; x2 là độ dài 2 cạnh góc vuông nên x1 ; x2 > 0 hay pt có 2 nghiệm dương 

Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(m+2\right)^2-4\left(3m-3\right)>0\\m+2>0\\3m-3>0\end{cases}}\)

                             \(\Leftrightarrow\hept{\begin{cases}m^2+4m+4-12m+12>0\\m>1\end{cases}}\)

                             \(\Leftrightarrow\hept{\begin{cases}m^2-8m+16>0\\m>1\end{cases}}\)

                             \(\Leftrightarrow\hept{\begin{cases}\left(m-4\right)^2>0\\m>1\end{cases}}\)

                            \(\Leftrightarrow\hept{\begin{cases}m>1\\m\ne4\end{cases}}\)

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=m+2\\x_1x_2=3m-3\end{cases}}\)
Vì x1 ; x2 là độ dài 2 cạnh góc vuông của tam giác vuông có độ dài cạnh huyền bằng 5

\(\Rightarrow x_1^2+x_2^2=25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\)

\(\Leftrightarrow\left(m+2\right)^2-2\left(3m-3\right)=25\)

\(\Leftrightarrow m^2+4m+4-6m+6=25\)

\(\Leftrightarrow m^2-2m-15=0\)

\(\Leftrightarrow\left(m-5\right)\left(m+3\right)=0\)

\(\Leftrightarrow m=5\left(Do\text{ }\hept{\begin{cases}m>1\\m\ne4\end{cases}}\right)\)

Vậy m = 5

7 tháng 3 2021

Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức VI-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\)

Mà \(x_1,x_2\) là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5  nên ta có:\(\Rightarrow x_1^2+x_2^2=25\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\Rightarrow\left(m+5\right)^2-2\left(3m+6\right)=25\Leftrightarrow m^2+10m+25-6m-12=25\Leftrightarrow m^2+4m-12=0\Leftrightarrow m^2-2m+6m-12=0\Leftrightarrow\left(m-2\right)\left(m+6\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-6\end{matrix}\right.\) b Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m-6\\x_1x_2=2m-2\end{matrix}\right.\) \(\Rightarrow T=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m-6\right)^2-2\left(2m-2\right)=4m^2-24m+36-4m+4=4m^2-28m+40=4m^2-28m+49-9=\left(2m-7\right)^2-9\ge-9\) Dấu = xảy ra \(\Leftrightarrow m=\dfrac{7}{2}\)

7 tháng 3 2021

Trước đó phải chứng minh phương trình có hai nghiệm phân biệt cách cách tính denta đúng ko ạ

 

11 tháng 4 2017

GIỜ BÀI NÀY KHÔNG CÒN GIAO LƯU NỮA

(1) (M+1)^2 -2m=m^2 +1 >=0 moi m => (1) được c/m

(2) x1^2 +x^2 =12

=> 4(m+1)^2 -4m =12

m^2+m+1=3 => m=1, -2

=> m

(3) từ  (2)  GTNN A=3/4 khi x=-1/2

có thể sai đừng tin

5 tháng 3 2022

Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-m+1\)\(\Leftrightarrow x^2-mx+m-1=0\)

Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta=\left(-m\right)^2-4.1\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\)\(\Leftrightarrow m-2\ne0\)\(\Leftrightarrow m\ne2\)

Khi đó \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)(hệ thức Vi-ét)

Độ dài cạnh huyền của tam giác vuông có 2 cgv là \(x_1,x_2\)là \(\sqrt{x_1^2+x_2^2}=\sqrt{\left(x_1+x_2\right)^2-2x_1x_2}=\sqrt{m^2-2\left(m-1\right)}=\sqrt{m^2-2m+2}\)

Ta có \(x_1x_2=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)hệ thức lượng trong tam giác vuông.

\(\Leftrightarrow m-1=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)\(\Leftrightarrow\frac{m-1}{\sqrt{m^2-2m+2}}=\frac{1}{\sqrt{5}}\)\(\Leftrightarrow\sqrt{\frac{m^2-2m+1}{m^2-2m+2}}=\sqrt{\frac{1}{5}}\)\(\Leftrightarrow\frac{m^2-2m+1}{m^2-2m+2}=\frac{1}{5}\)\(\Leftrightarrow5m^2-10m+5=m^2-2m+2\)\(\Leftrightarrow4m^2-8m+3=0\)

\(\Delta_1=\left(-8\right)^2-4.4.3=16>0\)

\(\Rightarrow\orbr{\begin{cases}m_1=\frac{-\left(-8\right)+\sqrt{16}}{2.4}=\frac{3}{2}\\m_2=\frac{-\left(-8\right)-\sqrt{16}}{2.4}=\frac{1}{2}\end{cases}}\)

Vậy để [...] thì \(\orbr{\begin{cases}m=\frac{3}{2}\\m=\frac{1}{2}\end{cases}}\)