\(x^2-\left(m+2\right)x+3m-3=0\) 0 với x là ẩn, m là tham số 

-giả...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2019

cho phương trình x2(m+2)x+3m3=0  với x là ẩn, m là tham số 

15 tháng 2 2019

a,Với m = -1 thì pt trở thành

\(x^2-\left(-1+2\right)x+3\left(-1\right)-3=0\)

\(\Leftrightarrow x^2-x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

b, Vì pt có 2 nghiệm x1 ; x2 là độ dài 2 cạnh góc vuông nên x1 ; x2 > 0 hay pt có 2 nghiệm dương 

Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(m+2\right)^2-4\left(3m-3\right)>0\\m+2>0\\3m-3>0\end{cases}}\)

                             \(\Leftrightarrow\hept{\begin{cases}m^2+4m+4-12m+12>0\\m>1\end{cases}}\)

                             \(\Leftrightarrow\hept{\begin{cases}m^2-8m+16>0\\m>1\end{cases}}\)

                             \(\Leftrightarrow\hept{\begin{cases}\left(m-4\right)^2>0\\m>1\end{cases}}\)

                            \(\Leftrightarrow\hept{\begin{cases}m>1\\m\ne4\end{cases}}\)

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=m+2\\x_1x_2=3m-3\end{cases}}\)
Vì x1 ; x2 là độ dài 2 cạnh góc vuông của tam giác vuông có độ dài cạnh huyền bằng 5

\(\Rightarrow x_1^2+x_2^2=25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\)

\(\Leftrightarrow\left(m+2\right)^2-2\left(3m-3\right)=25\)

\(\Leftrightarrow m^2+4m+4-6m+6=25\)

\(\Leftrightarrow m^2-2m-15=0\)

\(\Leftrightarrow\left(m-5\right)\left(m+3\right)=0\)

\(\Leftrightarrow m=5\left(Do\text{ }\hept{\begin{cases}m>1\\m\ne4\end{cases}}\right)\)

Vậy m = 5

11 tháng 4 2017

GIỜ BÀI NÀY KHÔNG CÒN GIAO LƯU NỮA

(1) (M+1)^2 -2m=m^2 +1 >=0 moi m => (1) được c/m

(2) x1^2 +x^2 =12

=> 4(m+1)^2 -4m =12

m^2+m+1=3 => m=1, -2

=> m

(3) từ  (2)  GTNN A=3/4 khi x=-1/2

có thể sai đừng tin

28 tháng 6 2020

Theo hệ thức vi ét thì : \(x_1.x_2=m+8\)

\(< =>\hept{\begin{cases}x_1=\frac{m+8}{x_2}\\x_2=\frac{m+8}{x_1}\end{cases}}\)

Khi đó : \(\left(\frac{m+8}{x_2}\right)^3-\frac{m+8}{x_1}=0\)

\(< =>\frac{\left(m+8\right)^3}{x_2^3}-\frac{m+8}{x_1}=0\)

\(< =>\left(m+8\right)\left(\frac{\left(m+8\right)^2}{x_2^3}-\frac{1}{x_1}\right)=0\)

\(< =>\orbr{\begin{cases}m=-8\\\frac{m^2+16m+64}{x_2^3}=\frac{1}{x_1}\left(+\right)\end{cases}}\)

\(\left(+\right)< =>m^2.x_1+16m.x_1+64x_1=x_2^3\)

Tự giải tiếp :D

Chuyển vế :

\(x_1^2=2\left(m+1\right)x_1-m^2+1\)

thay vào Phuogw trình tìm m thôi

3 tháng 6 2017

1. Với m=5

\(\Rightarrow x^2-\left(2.5+1\right).x+5^2-1=0\\ \Rightarrow x^2-11.x=-24\\ \)

\(\Rightarrow x^2-\frac{11}{2}.2.x+\left(\frac{11}{2}\right)^2=-24-\left(\frac{11}{2}\right)^2=\frac{-217}{4}\\ \Rightarrow\left(x+\frac{11}{2}\right)^2=-\frac{217}{4}\)

nên x thuộc rỗng