\(x^2-\left(2m-n\right)x+\left(2m+3n-1\right)=0\)(1) (m, n là tham số)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 6 2019

\(n=0\Rightarrow x^2-2mx+2m-1=0\)

\(a+b+c=1-2m+2m-1=0\Rightarrow\) pt luôn có nghiệm với mọi m

\(\Delta=\left(2m-n\right)^2-4\left(2m+3m-1\right)\ge0\) (1)

Theo Viet ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m-n\\x_1x_2=2m+3n-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_1+x_2=-1\\\left(x_1+x_2\right)^2-2x_1x_2=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m-n=-1\\2m+3n-1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m-n=-1\\2m+3n=-5\end{matrix}\right.\) \(\Rightarrow m=n=-1\)

Thay vào (1) để thử thấy thỏa mãn, vậy ...

14 tháng 1 2018

viet dc k bạn

2 tháng 4 2018

\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)

Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)

=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)

Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)

16 tháng 2 2019

từ gt => (x1-1)(x2-1) >0
và pt có 2 nghiệm phân biệt

16 tháng 2 2019

Vì 1 < x1 < x2 nên pt đã cho có 2 nghiệm dương phân biệt

Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(2m-3\right)^2-4m^2+12m>0\\2m-3>0\\m^2-3m>0\end{cases}}\)

                              \(\Leftrightarrow\hept{\begin{cases}4m^2-12m+9-4m^2+12m>0\\m>\frac{3}{2}\\x< 0\left(h\right)x>3\end{cases}}\)

                              \(\Leftrightarrow\hept{\begin{cases}9>0\left(LuonĐúng\right)\\x>3\end{cases}}\)

                             \(\Leftrightarrow x>3\)

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m-3\\x_1x_2=m^2-3m\end{cases}}\)

  

Vì \(1< x_1< x_2\Rightarrow\hept{\begin{cases}x_1-1>0\\x_2-1>0\end{cases}}\)             

                        \(\Rightarrow\left(x_1-1\right)\left(x_2-1\right)>0\)

                        \(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1>0\)

                         \(\Leftrightarrow m^2-3m-2m+3+1>0\)

                       \(\Leftrightarrow m^2-5m+4>0\)

                        \(\Leftrightarrow\orbr{\begin{cases}m< 1\\m>4\end{cases}}\)

Mà m > 3 nên m > 4

Vậy m > 4

13 tháng 2 2020

a, \(\Delta=\left(5m-1\right)^2-4\left(6m^2-2m\right)=25m^2-10m+1-24m^2+8m\)

\(=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\left(đpcm\right)\)

c, Theo hệ thức Vi-lét ta có: \(\hept{\begin{cases}x_1+x_2=5m-1\\x_1x_2=6m^2-2m\end{cases}}\)

\(\Rightarrow x^2_1+x^2_2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

\(\Leftrightarrow\left(5m-1\right)^2-2\left(6m^2-2m\right)=1\)

\(\Leftrightarrow25m^2-10m+1-12m^2+4m=1\)

\(\Leftrightarrow13m^2-6m=0\)

\(\Leftrightarrow m\left(13m-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\13m-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}\)

Vậy \(\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}\) thì pt có 2 nghiệm \(x_1;x_2\) thỏa mãn \(x^2_1+x^2_2=1\)

22 tháng 4 2021

Δ = b2 - 4ac = [ -2( m + 1 ) ]2 - 16m

= 4( m2 + 2m + 1 ) - 16m 

= 4m2 + 8m + 4 - 16m = 4m2 - 8m + 4

= 4( m2 - 2m + 1 ) = 4( m - 1 )2 ≥ 0 ∀ m

=> (1) luôn có nghiệm với mọi m

Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=4m\end{cases}}\)

a) Để (1) có hai nghiệm đối nhau thì \(\hept{\begin{cases}x_1+x_2=0\\x_1x_2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}2m+2=0\\4m< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-1\\m< 0\end{cases}}\Leftrightarrow m=-1\left(tm\right)\)

b) \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\left(ĐKXĐ:x_1,x_2\ne0\right)\)

\(\Leftrightarrow\frac{x_1^2}{x_1x_2}+\frac{x_2^2}{x_1x_2}=4\)

\(\Rightarrow x_1^2+x_2^2=4x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)

\(\Leftrightarrow4m^2+8m+4-24m=0\)

\(\Leftrightarrow m^2-4m+1=0\)

Đến đây bạn dùng công thức nghiệm rồi tính nốt nhé :)