Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=8>0\) nên phương trình luôn có 2 nghiệm.
Theo viet: x1 + x2 = 2; x1*x2 = -1
Phương trình cần tìm có 2 nghiệm là -x1 và -x2
S= - x1 - x2 = -(x1 + x2) = -2
P= (-x1)*(-x2) = x1*x2 = -1
Vậy phương trình cần tìm là: X2 - SX + P = X2 + 2X - 1
Theo hệ thức Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{2}\\x_1x_2=\dfrac{1}{2}\end{matrix}\right.\)
Giả sử pt bậc 2 cần tìm có các nghiệm:
\(\left\{{}\begin{matrix}x_3=\dfrac{x_1}{x_2+1}\\x_4=\dfrac{x_2}{x_1+1}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{x_1}{x_2+1}+\dfrac{x_2}{x_1+1}\\x_3x_4=\left(\dfrac{x_1}{x_2+1}\right)\left(\dfrac{x_2}{x_1+1}\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{x_1^2+x_2^2+x_1+x_2}{x_1x_2+x_1+x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2+x_1+x_2}{x_1x_2+x_1+x_2+1}\\x_3x_4=\dfrac{x_1x_2}{x_1x_2+x_1+x_2+1}\end{matrix}\right.\)
Thay số:
\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{31}{16}\\x_3x_4=\dfrac{1}{8}\end{matrix}\right.\)
Theo định lý Viet đảo, \(x_3;x_4\) là nghiệm của:
\(x^2-\dfrac{31}{16}x+\dfrac{1}{8}=0\Leftrightarrow16x^2-31x+2=0\)
Lời giải:
Theo định lý Viet: $x_1+x_2=\frac{5}{2}=2,5; x_1x_2=\frac{1}{2}=0,5$
Khi đó:
\(\frac{x_1}{x_2+1}.\frac{x_2}{x_1+1}=\frac{x_1x_2}{(x_2+1)(x_1+1)}=\frac{x_1x_2}{x_1x_2+(x_1+x_2)+1}=\frac{0,5}{0,5+2,5+1}=\frac{1}{8}\)
\(\frac{x_1}{x_2+1}+\frac{x_2}{x_1+1}=\frac{x_1^2+x_1+x_2^2+x_2}{(x_1+1)(x_2+1)}=\frac{(x_1+x_2)^2-2x_1x_2+(x_1+x_2)}{x_1x_2+(x_1+x_2)+1}\)
\(=\frac{2,5^2-2.0,5+2,5}{0,5+2,5+1}=\frac{31}{16}\)
Khi đó áp dụng định lý Viet đảo thì $\frac{x_1}{x_2+1}$ và $\frac{x_2}{x_1+1}$ là nghiệm của pt:
$x^2-\frac{31}{16}x+\frac{1}{8}=0$
Gọi x1,x2 là các nghiệm của phương trình đã cho
Áp dụng hệ thức Vi-et,ta có :
x1 + x2 = -5 ; x1x2 = -1
gọi y1,y2 là các nghiệm của phương trình phải lập,ta được :
y1 + y2 = x14 + x24 , y1y2 = x14x24
Ta có : x12 + x22 = ( x1 + x2 )2 - 2x1x2 = 25 + 2 - 27
Do đó : y1 + y2 = x14 + x24 = ( x12 + x22 )2 - 2x12x22 = 729 - 2 = 727
y1y2 = ( x1x2 )4 = 1
Từ đó pt phải lập có dạng : y2 - 727y + 1 = 0
Ta co: P = -1 <0
=> (1) có 2 nghiệm phân biệt khác dấu
Gọi hai nghiệm đó là \(x_1;x_2\)
=> \(x_1+x_2=-5;x_1.x_2=-1\)
Ta có: \(\left(x_1.x_2\right)^4=\left(-1\right)^4=1\)
\(\left(x_1\right)^4+\left(x_2\right)^4=\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2\)
\(=\left[\left(-5\right)^2-2.\left(-1\right)\right]^2-2.\left(-1\right)^2\)
\(=727\)
=> Phương trình có các nghiệm lũy thừa bậc 4 của các nghiệm phương trình (1) là:
\(x^2-727x+1=0\)