K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>(x1-1)[x2^2-x2(x1+x2-1)+x1x2+1]=-3

=>(x1-1)[-x1x2+x2+x1x2+1]=-3

=>(x1-1)(x2+1)=-3

=>x1x2+(x1-x2)-1=-3

=>(x1-x2)=-3+1-x1x2=-2-m+5=-m+3

=>(x1+x2)^2-4x1x2=m^2-6m+9

=>4^2-4(m-5)=m^2-6m+9

=>4m-20=16-m^2+6m-9=-m^2+6m+7

=>4m-20+m^2-6m-7=0

=>m^2-2m-27=0

=>\(m=1\pm2\sqrt{7}\)

21 tháng 5 2021

Để pt có hai nghiệm pb:

\(\Leftrightarrow\)\(\Delta=16-4\left(m-4\right)>0\)\(\Leftrightarrow8>m\)

\(\left(x_1-1\right)\left(x_2^2-3x_2+m-3\right)=-2\)

\(\Leftrightarrow\left(x_1-1\right)\left(x^2_2-4x_2+m-4\right)+\left(x_1-1\right)\left(x_2+1\right)=-2\)

\(\Leftrightarrow x_1x_2+x_1-x_2-1=-2\) (*) (vì x2 là một nghiệm của pt nên \(x_2^2-4x_2+m-4=0\))

TH1: \(x_1>x_2\)

(*)\(\Leftrightarrow x_1x_2+\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}+1=0\)

\(\Leftrightarrow m-4+\sqrt{4^2-4\left(m-4\right)}+1=0\)

\(\Leftrightarrow\sqrt{32-4m}=3-m\) \(\Leftrightarrow\left\{{}\begin{matrix}32-4m=9-6m+m^2\\m\le3\end{matrix}\right.\) \(\Leftrightarrow m=1-2\sqrt{6}\)

TH2:\(x_1< x_2\)

(*)\(\Leftrightarrow\)\(x_1x_2-\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}+1=0\)

\(\Leftrightarrow m-4+1=\sqrt{32-4m}\) \(\Leftrightarrow\left\{{}\begin{matrix}m-3\ge0\\\left(m-3\right)^2=32-4m\end{matrix}\right.\)\(\Leftrightarrow m=1+2\sqrt{6}\) (tm đk m<8)

Vậy \(\left[{}\begin{matrix}m=1-2\sqrt{6}\\m=1+2\sqrt{6}\end{matrix}\right.\)

29 tháng 5 2022

giải thích cho mình vì sao biến đổi đc từ 

 

m4+424(m4)+1 thành 324m

=>(x1+x2)^2+x1x2=1

=>(-2m)^2+(-3)=1

=>4m^2=4

=>m=-1 hoặc m=1

25 tháng 5 2023

Do a = 1 và c = -3

⇒ a và c trái dấu

⇒ Phương trình luôn có hai nghiệm phân biệt

Theo Viét, ta có:

x₁ + x₂ = -2m

x₁x₂ = -3

Lại có:

x₁² + x₂² + 3x₁x₂ = 1

⇔ x₁² + 2x₁x₂ + x₂² + x₁x₂ = 1

⇔ (x₁ + x₂)² + x₁x₂ = 1

⇔ (-2m)² - 3 = 1

⇔ 4m² = 4

⇔ m² = 1

⇔ m = -1 hoặc m = 1

Vậy m = -1; m = 1 thì phương trình đã cho có hai nghiệm phân biệt x₁, x₂ thỏa mãn: x₁² + x₂² + 3x₁x₂ = 1

Δ=(-2)^2-4(m-1)

=-4m+4+4

=-4m+8

Để phương trình có hai nghiệm phân biệt thì -4m+8>0

=>-4m>-8

=>m<2

x1^2+x2^2-3x1x2=2m^2+|m-3|

=>2m^2+|m-3|=(x1+x2)^2-5x1x2=2^2-5(m-1)=4-5m+5=-5m+9

TH1: m>=3

=>2m^2+m-3+5m-9=0

=>2m^2+6m-12=0

=>m^2+3m-6=0

=>\(m\in\varnothing\)

TH2: m<3

=>2m^2+3-m+5m-9=0

=>2m^2+4m-6=0

=>m^2+2m-3=0

=>(m+3)(m-1)=0

=>m=1 hoặc m=-3

17 tháng 5 2023

∆ = m² - 4(m - 5)

= m² - 4m + 5

= (m² - 4m + 4) + 1

= (m - 2)² + 1 > 0 với mọi m

Phương trình luôn có 2 nghiệm phân biệt

Theo Viét ta có:

x₁ + x₂ = m (1)

x₁.x₂ = m - 5 (2)

x₁ + 2x₂ = 1 (3)

Lấy (3) - (1) ta được x₂ = 1 - m thay vào (1) ta được

x₁ + 1 - m = m

⇔ x₁ = 2m - 1

Thay x₁ = 2m - 1 và x₂ = 1 - m vào (2) ta được:

(2m - 1)(1 - m) = m - 5

⇔ 2m - 2m² - 1 + m - m + 5 = 0

⇔ -2m² + 2m + 5 = 0

∆ = 4 - 4.(-2).5

= 44

m₁ = -1 + √11

m₂ = -1 - √11

Vậy m = -1 + √11; m = -1 - √11 thì phương trình đã cho có hai nghiệm thỏa mãn x₁ + 2x₂ = 1

12 tháng 8 2019

Phương trình có hai nghiệm phân biệt x1, x2 ∆ = 52 – 4(3m + 1) > 0 21 – 12m > 0

 ó m < 21/12 

Với m < 21/12 , ta có hệ thức  x 1 + x 2 = 5 x 1 x 2 = 3 m + 1   V i e t '

⇒ | x 1 − x 2 | = ( x 1 − x 2 ) 2 = ( x 1 + x 2 ) 2 − 4 x 1 x 2 = 5 2 − 4 ( 3 m + 1 ) = 21 − 12 m = > | x 1 2 − x 2 2 | = | ( x 1 + x 2 ) ( x 1 − x 2 ) | = | 5 ( x 1 − x 2 ) | = 5 | x 1 − x 2 | = 5 21 − 12 m

Ta có:  | x 1 2 − x 2 2 | = 15 ⇔ 5 21 − 12 m = 15 ⇔ 21 − 12 m = 3 ⇔ 21 − 12 m = 9 ⇔ 12 m = 12 ⇔ m = 1 (t/m)

Vậy m = 1 là giá trị cần tìm

6 tháng 6 2023

\(\Delta=\left(-m\right)^2-2.1.\left(m-1\right)\\ =m^2-2m+1\\ =\left(m-1\right)^2\)

Phương trình có hai nghiệm phân biệt :

\(\Leftrightarrow\Delta>0\\ \Rightarrow\left(m-1\right)^2>0\\ \Rightarrow m\ne1\)

Theo vi ét : 

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(x^2_1+x^2_2=x_1+x_2\\ \Leftrightarrow x^2_1+x^2_2=m\\ \Leftrightarrow\left(x^2_1+2x_1x_2+x_2^2\right)-2x_1x_2=m\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-m=0\\ \Leftrightarrow m^2-2\left(m-1\right)-m=0\\ \Leftrightarrow m^2-2m+2-m=0\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=2\left(t/m\right)\end{matrix}\right.\)

Vậy \(m=2\)