\(x^2-3x+m=0\) (1) với m là tham số

a) giải phương trình khi m=1

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2022

a) Khi \(m=1\) ta có phương trình \(x^2-3x+1=0\)

\(\Delta=3^2-4=5\)

Phương trình có 2 nghiệm phân biệt \(x_1=\dfrac{3-\sqrt{5}}{2};x_2=\dfrac{3+\sqrt{5}}{2}\)

b) Xét phương trình \(x^2-3x+m=0\left(1\right)\)

\(\Delta=9-4m\)

PT có hai nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow9-4m>0\Leftrightarrow m< \dfrac{9}{4}\)

Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m\end{matrix}\right.\)

Để \(x_1^2+x_2^2=2021\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=2021\)

\(\Leftrightarrow3^2-2m=2021\Leftrightarrow2m=-2012\Leftrightarrow m=-1006\) (TM)

15 tháng 8 2021

Phương trình có hai nghiệm phân biệt <=> Δ ≥ 0 <=> (-2)2 - 4.1/2.(m-1) ≥ 0 <=> 4 - 2m + 2 ≥ 0 <=> m ≤ 3

Theo hệ thức Viète : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=2m-2\end{cases}}\)

Ta có : \(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\Leftrightarrow x_1x_2\left(x_1^2+x_2^2\right)+96=0\)

\(\Leftrightarrow x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+96=0\Leftrightarrow\left(2m-2\right)\left(18-2m\right)+96=0\)

\(\Leftrightarrow m^2-10-15=0\)

\(\Delta=b^2-4ac=100+60=160\)

\(\Delta>0\), áp dụng công thức nghiệm thu được \(m_1=5+2\sqrt{10}\left(ktm\right);m_2=5-2\sqrt{10}\left(tm\right)\)

Vậy với \(m=5-2\sqrt{10}\)thì thỏa mãn đề bài

15 tháng 8 2021

\(a=\frac{1}{2};b=-2;c=m-1\)

\(\Delta=\left(-2\right)^2-4.\frac{1}{2}.\left(m-1\right)\)

\(\Delta=4-2\left(m-1\right)\)

\(\Delta=4-2m+2\)

\(\Delta=6-2m\)

để pt có 2 nghiệm phân biệt thì \(6-2m>0\)

\(< =>m< 3\)

áp dụng vi - ét

\(\hept{\begin{cases}x_1+x_2=\frac{2}{\frac{1}{2}}=4\\x_1x_2=\frac{m-1}{\frac{1}{2}}=2m-2\end{cases}}\)

\(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\)

\(\left(2m-2\right)\left(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{2}\right)+48=0\)

\(\left(2m-2\right)\left(\frac{4^2-4m-4}{2}\right)+48=0\)

\(\left(2m-2\right)\left(6-2m\right)+48=0\)

\(12m-12-4m^2+4m+48=0\)

\(-4m^2+16m+36=0\)

\(\sqrt{\Delta}=\sqrt{16^2-4.\left(-4\right).36}=8\sqrt{13}\)

\(m_1=\frac{8\sqrt{13}-16}{-8}=2-\sqrt{13}\left(TM\right)\)

\(m_2=\frac{-8\sqrt{13}-16}{-8}=2+\sqrt{13}\left(KTM\right)\)

vậy \(m=2-\sqrt{13}\)thì thỏa mãn yêu cầu \(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\)

6 tháng 1 2017

\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)

\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm

\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)

6 tháng 1 2017

a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)

\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)

với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề

4 tháng 6 2017
  1. \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-m^2+1=1>0\)vậy phương trình luôn có hai nghiệm với mọi \(m\ne1\)
  2. Theo viet ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m+1\end{cases}}\)\(\Rightarrow m+1=5\Rightarrow m=4\Rightarrow x_1+x_2=2m=2.4=8\)
  3. từ hệ thức viet ta khử m được hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc m: thấy \(x_1+x_2-2x_2x_1=2m-2\left(m+1\right)=-2\)
  4. \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\frac{5}{2}\)\(\Leftrightarrow\frac{4m^2-2m-2}{m+1}=-\frac{5}{2}\Rightarrow8m^2-4m-4=-5m-5\left(m\ne-1\right)\)\(\Leftrightarrow8m^2+m+1=0\left(vn\right)\)không có giá trị nào của m thỏa mãn
13 tháng 2 2020

giúp mình với mình cần nộp trong ngày 17/2/2020