Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phương trình đã cho có 2 nghiệm thì \(\Delta^'\ge0\Leftrightarrow3^2-2.\left(m+7\right)\ge0\Leftrightarrow-2m-5\ge0\Leftrightarrow m\le-\frac{5}{2}..\)
Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=3\left(1\right)\\x_1x_2=\frac{m+7}{2}\left(2\right)\end{cases}}\)
Theo đề ra \(x_1=-2x_2\)Thế vào (1) ta được \(-2x_2+x_2=3\Leftrightarrow x_2=-3\Rightarrow x_1=-2.\left(-3\right)=6\)
Thế \(\hept{\begin{cases}x_1=6\\x_2=-3\end{cases}}\)vào (2) ta có \(6.\left(-3\right)=\frac{m+7}{2}\Leftrightarrow m+7=-36\Leftrightarrow m=-43.\left(tmđk\right)\)
Kết luận ...
Tính delta => Tìm điều kiện của m để PT có 2 nghiệm x1, x2 là delta > 0.
Áp dụng Viets vào để tìm x1+x2 và x1.x2 theo m.
Sau đó: vì |x1-x2|=3 => (x1-x2)^2=9 <=> x12 + x22 -2x1.x2=9 <=> (x1+x2)2 - 4x1.x2=9
Sau đó thay x1+x2 và x1.x2 (theo Viets) vào để tìm được m.
Đối chiếu với đk của m là được
a ) Thay m =0 vào phương trình ta được: \(x^2-2x=0\Rightarrow x\left(x-2\right)=0\)0
\(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Phương trình \(x^2-2x-2m^2=0\)có các hệ số a = 1; b = -2; c = -2m2
\(\Rightarrow\Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-2m^2\right)=4+8m^2\)(luôn dương)
Giả sử phương trình có 2 nghiệm x1; x2 thì \(\hept{\begin{cases}x_1=\frac{2+\sqrt{4+8m^2}}{2}=1+\sqrt{1+2m^2}\\x_2=\frac{2-\sqrt{4+8m^2}}{2}=1-\sqrt{1+2m^2}\end{cases}}\)
Thay vào dữ kiện \(x_1^2=4x_2^2\), ta được:
\(\left(1+\sqrt{1+2m^2}\right)^2=4\left(1-\sqrt{1+2m^2}\right)^2\)
\(\Leftrightarrow1+1+2m^2+2\sqrt{1+2m^2}=4-8\sqrt{1+2m^2}+4+8m^2\)
\(\Leftrightarrow10\sqrt{1+2m^2}=6m^2+6\)
Bình phương hai vế:
\(100\left(1+2m^2\right)=36m^4+72m^2+36\)
\(\Leftrightarrow36m^4-128m^2-64=0\)
Đặt \(m^2=t\left(t\ge0\right)\)
Phương trình trở thành \(36t^2-128t-64=0\)
\(\Delta=128^2+4.36.64=25600,\sqrt{\Delta}=160\)
\(\Rightarrow\orbr{\begin{cases}t=\frac{128+160}{72}=4\\t=\frac{128-160}{72}=\frac{-4}{9}\left(L\right)\end{cases}}\)
Vậy t = 4\(\Rightarrow m=\pm2\)
Vậy khi m =-2 hoặc 2 thì phương trình có 2 nghiệm \(x_1;x_2\)khác 0 và thỏa mãn điều kiện \(x_1^2=4x_2^2\)
Phương trình 2 nghiệm phân biệt khi
\(\Delta=\left(1-m\right)^2-4\left(-m\right).1=\left(m+1\right)^2>0\)
\(\Leftrightarrow m\ne-1\)
Hệ thức Vière : \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m\end{cases}}\)
Khi đó \(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)
<=> \(-x_1x_2+5\left(x_1+x_2\right)\ge-21\)
<=> \(-\left(-m\right)+5\left(m-1\right)\ge-21\)
\(\Leftrightarrow6m\ge-16\Leftrightarrow m\ge-\frac{8}{3}\)
Kết hợp điều kiện => \(\hept{\begin{cases}m\ge-\frac{8}{3}\\m\ne-1\end{cases}}\)thì thỏa mãn bài toán
\(\Delta=\left(1-m\right)^2+4m=\left(m+1\right)^2>0\Rightarrow m\ne-1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m\end{matrix}\right.\)
\(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)
\(\Leftrightarrow5\left(x_1+x_2\right)-x_1x_2\ge-21\)
\(\Leftrightarrow5\left(m-1\right)+m\ge-21\)
\(\Leftrightarrow m\ge-\dfrac{8}{3}\)
Kết hợp điều kiện ban đầu ta được: \(\left\{{}\begin{matrix}m\ne-1\\m\ge-\dfrac{8}{3}\end{matrix}\right.\)
a) Nếu m = -1 thì : \(4x-3=0\Leftrightarrow x=\frac{3}{4}\) => pt có một nghiệm
Nếu \(m\ne-1\) , xét \(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)=m^2-2m+1-\left(m^2-m-2\right)=-m+3\)
Để pt có hai nghiệm phân biệt thì \(\Delta>0\) , tức là \(3-m>0\Leftrightarrow m< 3\)
Vậy để pt có hai nghiệm phân biệt thì \(\begin{cases}m< 3\\m\ne-1\end{cases}\)
b) Thay x = 2 vào pt đã cho , tìm được m = -6
Suy ra pt : \(-5x^2+14x-8=0\Leftrightarrow\left(5x-4\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{4}{5}\end{array}\right.\)
Vậy nghiệm còn lại là x = 4/5
c) Áp dụng hệ thức Vi-et , ta có : \(\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m-2\end{cases}\)
\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{7}{4}\Leftrightarrow4\left(x_1+x_2\right)=7x_1.x_2\)
\(\Rightarrow4.\left(2m-2\right)=7.\left(m-2\right)\Leftrightarrow8m-8=7m-14\Leftrightarrow m=-6\)
d) Ta có : \(A=2\left(x_1^2+x_2^2\right)+x_1.x_2=2\left(x_1+x_2\right)^2-3x_1.x_2=8\left(m-1\right)^2-3\left(m-2\right)\)
\(=8m^2-19m+14=8\left(m-\frac{19}{16}\right)^2+\frac{87}{32}\ge\frac{87}{32}\)
=> Min A = 87/32 <=> m = 19/16
\(x^2m-2\left(m-1\right)x+m+1=0\)
\(\Delta=b^2-4ac\)
\(\Rightarrow\Delta=4m+4\)
Để phương trình có 2 nghiệm phân biệt
\(\Rightarrow\Delta>0\Leftrightarrow m>-1\)
Theo định lý Viet
\(\Rightarrow\hept{\begin{cases}x_1+x_2=\frac{-b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=\frac{2\left(m-1\right)}{m}\\x_1.x_2=\frac{m+1}{m}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x_1+x_2\right)^2=\left[\frac{2\left(m-1\right)}{m}\right]^2\\2x_1x_2=\frac{2\left(m+1\right)}{m}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x_1^2+x_2^2+2x_1x_2=\frac{4\left(m-1\right)^2}{m^2}\left(1\right)\\2x_1x_2=\frac{2\left(m+1\right)}{m}\end{cases}}\)
Xét phương trình ( 1 )
\(pt\left(1\right)\Leftrightarrow16+\frac{2\left(m+1\right)}{m}=\frac{4\left(m-1\right)^2}{m^2}\)
\(\Leftrightarrow\frac{16m+2\left(m+1\right)}{m}=\frac{4\left(m-1\right)^2}{m^2}\)
\(\Leftrightarrow\frac{18m+2}{m}=\frac{4\left(m^2-2m+1\right)}{m^2}\)
\(\Leftrightarrow m^2\left(18m+2\right)=4m\left(m^2-2m+1\right)\)với m khác 0
\(\Leftrightarrow m\left(18m+2\right)=4\left(m^2-2m+1\right)\)
\(\Leftrightarrow18m^2+2m=4m^2-8m+4\)
\(\Leftrightarrow14m^2+10m-4=0\)
\(\Delta=b^2-4ac\)
\(\Rightarrow\Delta=324\)
\(\Rightarrow\hept{\begin{cases}m_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-10+\sqrt{324}}{28}\\m_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-10-\sqrt{324}}{28}\end{cases}}\)
Do \(m>-1\)
\(\Rightarrow m=\frac{-10+\sqrt{324}}{28}\)
\(\Delta'=2-m\ge0\Rightarrow m\le2\)
Theo Viet pt có 2 nghiệm thỏa: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-1\end{matrix}\right.\)
Ta có hệ: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1=2x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x_2=2\\x_1=2x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=\frac{2}{3}\\x_1=\frac{4}{3}\end{matrix}\right.\)
Lại có \(x_1x_2=m-1\Rightarrow m-1=\frac{2}{3}.\frac{4}{3}=\frac{8}{9}\Rightarrow m=\frac{17}{9}\) (t/m)