Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Để phương trình có 2 nghiệm phân biệt \(x_1,x_2\) thì \(\Delta>0\)
\(\Leftrightarrow\left(2m-1\right)^2-4.2\left(m-1\right)>0\)
Từ đó suy ra \(m\ne1,5\left(1\right)\)
Mặt khác, theo định lý Viet và giả thiết ta có:
\(\hept{\begin{cases}x_1+x_2=-\frac{2m-1}{2}\\x_1.x_2=\frac{m-1}{2}\\3x_1-4x_2=11\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_1=\frac{13-4m}{7}\\x_1=\frac{7m-7}{26-8m}\\3\frac{13-4m}{7}-4\frac{7m-7}{26-8m}=11\end{cases}}\)
Giải phương trình \(3\frac{13-4m}{7}-4\frac{7m-7}{26-8m}=11\)
Ta được \(m=-2\) và \(m=4,125\left(2\right)\)
Đối chiếu điều kiện \(\left(1\right)\) và \(\left(2\right)\) ta có: Với \(m=-2\) hoặc \(m=4,125\) thì phương trình đã có 2 nghiệm phân biệt
a, Vì pt trên nhận \(4+\sqrt{2019}\) là nghiệm nên
\(\left(4+\sqrt{2019}\right)^2-\left(2m+2\right)\left(4+\sqrt{2019}\right)+m^2+2m=0\)
\(\Leftrightarrow2035+8\sqrt{2019}-2m\left(4+\sqrt{2019}\right)-8-2\sqrt{2019}+m^2+2m=0\)
\(\Leftrightarrow m^2-2m\left(3+\sqrt{2019}\right)+6\sqrt{2019}+2027=0\)
Có \(\Delta'=\left(3+\sqrt{2019}\right)^2-6\sqrt{2019}-2027=1>0\)
Nên pt có 2 nghiệm \(m=\frac{3+\sqrt{2019}-1}{1}=2+\sqrt{2019}\)
hoặc \(m=\frac{3+\sqrt{2019}+1}{1}=4+\sqrt{2019}\)
b, Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=2m+2\left(1\right)\\x_1x_2=m^2+2m\left(2\right)\end{cases}}\)
Theo đề \(x_1-x_2=m^2+2\left(3\right)\)
Lấy (1) + (3) theo từng vế được
\(2x_1=m^2+2m+5\)
\(\Rightarrow x_1=\frac{m^2+2m+5}{2}\)
\(\Rightarrow x_2=2m+2-x_1=...=-\frac{\left(m-1\right)^2}{2}\)
Thay vào (2) được \(\frac{m^2+2m+5}{2}.\frac{-\left(m-1\right)^2}{2}=m^2+2m\)
\(\Leftrightarrow-\left(m^2+2m+5\right)\left(m-1\right)^2=4m^2+8m\)
hmmm
Câu 1 nè:Phương trình trình trên có 2 nghiệm phân biệt khi ∆>0 tức là (2m-1)²-8(m-1) =(2m-3)² >0 <=>m khác 2/3
Từ đó ta tính đc
x1=-1/2
x2=1-m hoặc x1=1-m,x2=-1/2
bạn thay vào
3x1-4x2=11 là tìm ra m,chú ý xét cả 2 trường hợp,nếu tìm ra m=3/2 thì loại.
\(\Delta=25-4m\)pt có 2 nghiệm <=> \(\Delta\ge0\Leftrightarrow25-4m\ge0\Leftrightarrow m\le\frac{25}{4}\)
áp dụng hệ thức vi ét ta có: \(x1+x2=5\) (1) ; \(x1.x2=m\)(2)
|x1-x2|=3
th1: x1-x2=3 <=> x1=3+x2 =>thế vào (1): x2+3+x2=5 <=> 2x2=2 <=> x2=1 =>x1=1+3=4 => x1.x2=m=1.4 => m=4(t/m đk)
th2: x1-x2=-3 <=> x1=-3+x2 => x2-3+x2=5 <=> x2=4 => x1=1 => m=1.4=4 (t/m đk)
=> pt có 2 nghiệm... <=> m=4