Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo hệ thức Viet : \(\hept{\begin{cases}x_1x_2=\frac{c}{a}=2m+1\\x_1+x_2=-\frac{b}{a}=6\end{cases}}\)
Khi đó : \(x_1^2\left(x_2+1\right)+x_2^2\left(x_1+1\right)>0\)
\(< =>x_1^2x_2+x_1^2+x_2^2x_1+x_2^2>0\)
\(< =>\left(x_1x_2\right)\left(x_1+x_2\right)+\left(x_1+x_2\right)^2-2x_1x_2>0\)
\(< =>6\left(2m+1\right)+6^2-2\left(2m+1\right)>0\)
\(< =>12m+6+36-4m-2>0\)
\(< =>8m+40>0\)\(< =>m>-\frac{40}{8}=-5\)
Vậy để m thỏa mãn đk trên thì \(m>-5\)
mình sửa đề trên là > 0 nhé
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
Pt có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-4\left(5m-5\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-20m+20\ge0\)
\(\Leftrightarrow m^2-22m+21\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}m\le1\\m\ge21\end{cases}}\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=1-m\\x_1x_2=5m-5\end{cases}}\)
Chắc đề là \(x_1^2+x_2^2=3x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2=5x_1x_2\)
\(\Leftrightarrow\left(1-m\right)^2=5.\left(5m-5\right)\)
\(\Leftrightarrow1-2m+m^2=25m-25\)
\(\Leftrightarrow m^2-27m+26=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=26\\m=1\end{cases}\left(Tm\right)}\)
Vậy .........
Phương trình đã cho có nghiệm\(\Leftrightarrow\Delta'=m-1\ge0\Leftrightarrow m\ge1\)
Theo hệ thức Vi - et, ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2-m\end{cases}}\)
\(\Rightarrow m=x_1+x_2-x_1x_2\),Thay vào hệ thức \(2x_1^3+\left(m+2\right)x_2^2=5\),ta được:
\(2x_1^3+\left(2x_1+2x_2-x_1x_2\right)x_2^2=5\)
\(\Leftrightarrow2x_1^3+2x_1x_2^2+2x_2^3-x_1x_2^3=5\)
\(\Leftrightarrow2\left(x_1^3+x_2^3\right)-x_1x_2\left(x_2^2-2x_2\right)=5\)
\(\Leftrightarrow2\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]-x_1x_2\left(x_2^2-2x_2\right)=5\)
Vì x2 là nghiệm nên \(x_2^2-2x_2+2-m=0\)
\(\Leftrightarrow x_2^2-2x_2=m-2\left(1\right)\)
Đến đây tiếp tục dùng viet và tìm được m = 1
P/S: Không chắc