K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2021

a, Thay m = -1 vào phương trình trên ta được 

\(x^2+4x-5=0\)

Ta có : \(\Delta=16+20=36\)

\(x_1=\frac{-4-6}{2}=-5;x_2=\frac{-4+6}{2}=1\)

Vậy với m = -1 thì x = -5 ; x = 1 

b, Vì x = 2 là nghiệm của phương trình trên nên thay x = 2 vào phương trình trên ta được : 

\(4+8+3m-2=0\Leftrightarrow3m=-10\Leftrightarrow m=-\frac{10}{3}\)

Vậy với x = 2 thì m = -10/3 

c, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay 

\(16-4\left(3m-2\right)=16-12m+8=4m+8>0\)

\(\Leftrightarrow8>-4m\Leftrightarrow m>-2\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-4\\x_1x_2=\frac{c}{a}=3m-2\end{cases}}\)

\(\Leftrightarrow x_1+x_2=-4\Leftrightarrow x_1=-4-x_2\)(1) 

suy ra : \(-4-x_2+2x_2=1\Leftrightarrow-4+x_2=1\Leftrightarrow x_2=5\)

Thay vào (1) ta được : \(x_1=-4-5=-9\)

Mà \(x_1x_2=3m-2\Rightarrow3m-2=-45\Leftrightarrow3m=-43\Leftrightarrow m=-\frac{43}{3}\)

Δ=(-2)^2-4(m-1)

=-4m+4+4

=-4m+8

Để phương trình có hai nghiệm phân biệt thì -4m+8>0

=>-4m>-8

=>m<2

x1^2+x2^2-3x1x2=2m^2+|m-3|

=>2m^2+|m-3|=(x1+x2)^2-5x1x2=2^2-5(m-1)=4-5m+5=-5m+9

TH1: m>=3

=>2m^2+m-3+5m-9=0

=>2m^2+6m-12=0

=>m^2+3m-6=0

=>\(m\in\varnothing\)

TH2: m<3

=>2m^2+3-m+5m-9=0

=>2m^2+4m-6=0

=>m^2+2m-3=0

=>(m+3)(m-1)=0

=>m=1 hoặc m=-3

14 tháng 4 2022

a) Khi \(m=1\) ta có phương trình \(x^2-3x+1=0\)

\(\Delta=3^2-4=5\)

Phương trình có 2 nghiệm phân biệt \(x_1=\dfrac{3-\sqrt{5}}{2};x_2=\dfrac{3+\sqrt{5}}{2}\)

b) Xét phương trình \(x^2-3x+m=0\left(1\right)\)

\(\Delta=9-4m\)

PT có hai nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow9-4m>0\Leftrightarrow m< \dfrac{9}{4}\)

Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m\end{matrix}\right.\)

Để \(x_1^2+x_2^2=2021\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=2021\)

\(\Leftrightarrow3^2-2m=2021\Leftrightarrow2m=-2012\Leftrightarrow m=-1006\) (TM)

18 tháng 5 2021

a. Thay m=1 vào pt ta được: \(x^2+2x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

b, Để pt có hai nghiệm pb \(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow4-4\left(m-1\right)>0\Leftrightarrow m< 2\)

Theo hệ thức viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=m-1\end{matrix}\right.\)

Có \(x_1^3+x_2^3-6x_1x_2=4\left(m-m^2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-6x_1x_2=4\left(m-m^2\right)\)

\(\Leftrightarrow-8+6\left(m-1\right)-6\left(m-1\right)=4\left(m-m^2\right)\)

\(\Leftrightarrow4m^2-4m-8=0\) 

<=>\(\left[{}\begin{matrix}m=2\left(L\right)\\m=-1\left(Tm\right)\end{matrix}\right.\)

Vậy m=-1

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

20 tháng 2 2020

Câu a thay x=2 vào phương trình thì tìm được \(\orbr{\begin{cases}m=-\frac{3}{2}\\m=\frac{5}{2}\end{cases}}\)\

b)  m2x- 2(m+1).x +1 =0

\(\Delta=\left[-2\left(m+1\right)\right]^2-4m^2.1\)\(=4m^2+8m+4-4m^2=4\left(2m+1\right)\)

Phương trình có 2 nghiệm phân biệt khi và chỉ khi: \(\hept{\begin{cases}a\ne0\\\Delta>0\end{cases}\Leftrightarrow\hept{\begin{cases}m^2\ne0\\4\left(2m+1\right)>0\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ne0\\m>-\frac{1}{2}\end{cases}}}\)

14 tháng 3 2022

a, \(\Delta=m^2-4\left(-4\right)=m^2+16\)> 0 

Vậy pt luôn có 2 nghiệm pb 

b, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=5\)

Thay vào ta được \(m^2-2\left(-4\right)=5\Leftrightarrow m^2+3=0\left(voli\right)\)

 

14 tháng 3 2022

Bạn ơi, mình có thể hỏi câu c được không ạ? Nếu không được thì không sao, mình cảm ơn câu trả lời của bạn ạ ^-^ chúc bạn một ngày tốt lành nhé.

AH
Akai Haruma
Giáo viên
16 tháng 5 2021

Lời giải:

Để pt có 2 nghiệm pb thì:

$\Delta'=1-(2-m)=m-1>0\Leftrightarrow m>1$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=2-m\end{matrix}\right.\)

Khi đó:

$2x_1^3+(m+2)x_2^2=5$

$\Leftrightarrow 2x_1^3+(2x_1+2x_2-x_1x_2)x_2^2=5$

$\Leftrightarrow 2(x_1^3+x_2^3)+x_1(2-x_2)x_2^2=5$

\(\Leftrightarrow 2[(x_1+x_2)^3-3x_1x_2(x_1+x_2)]+x_1^2x_2^2=5\)

\(\Leftrightarrow 2[8-6(2-m)]+(2-m)^2=5\)

\(\Leftrightarrow m^2+8m-9=0\Leftrightarrow (m-1)(m+9)=0\)

Vì $m>1$ nên không có giá trị nào của $m$ thỏa mãn.

29 tháng 5 2023

Cho em hỏi làm sao lại chuyển được từ x1(2 - x2)x22 xuống thành x12x22 được vậy ạ?