\(x^2-2x-2m=0\) (ẩn x)

a) Tìm m để phương trình có hai nghiệm p...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 3 2018

Lời giải:

Để pt có hai nghiệm phân biệt thì \(\Delta'=1+2m>0\Leftrightarrow m> \frac{-1}{2}\)

a)

Áp dụng hệ thức Viete, với $x_1,x_2$ là hai nghiệm của pt:

\(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=-2m\end{matrix}\right.\)

Khi đó: \((x_1^2+1)(x_2^2+1)=5\)

\(\Leftrightarrow (x_1x_2)^2+x_1^2+x_2^2=4\)

\(\Leftrightarrow (x_1x_2)^2+(x_1+x_2)^2-2x_1x_2=4\)

\(\Leftrightarrow 4m^2+4+4m=4\)

\(\Leftrightarrow m(m+1)=0\Rightarrow m=0\) do \(m> \frac{-1}{2}\)

b)

Ta có:

\(u=\frac{1}{x_1+1}+\frac{1}{x_2+1}=\frac{x_1+x_2+2}{(x_1+1)(x_2+1)}\)

\(=\frac{x_1+x_2+2}{x_1x_2+(x_1+x_2)+1}=\frac{2+2}{-2m+2+1}=\frac{4}{3-2m}\)

\(v=\frac{1}{x_1+1}.\frac{1}{x_2+1}=\frac{1}{(x_1+1)(x_2+1)}=\frac{1}{x_1+x_2+x_1x_2+1}=\frac{1}{2-2m+1}=\frac{1}{3-2m}\)

Do đó pt nhận \(\frac{1}{x_1+1}; \frac{1}{x_2+1}\) làm nghiệm theo định lý Viete đảo là:

\(X^2-\frac{4}{3-2m}X+\frac{1}{3-2m}=0\)

\(\Leftrightarrow (3-2m)X^2-4X+1=0\)

17 tháng 3 2018

f(x) =x^2 -2x -2m

a) f(x) có hai nghiệm pb <=> 1 +2m > 0 => m>-1/2

P=\(\left(x_1^2+1\right)\left(x_2^2+1\right)=\left(x_1.x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1\)

\(P=\left(x_1x_2-1\right)^2+\left(x_1+x_2\right)^2=\left(2m+1\right)^2+4\)

\(P=5\Leftrightarrow\left(2m+1\right)^2=1\Leftrightarrow\left[{}\begin{matrix}2m+1=-1;m=-1\left(l\right)\\2m+1=1;m=0\left(n\right)\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}m\ge\dfrac{1}{2}\\1+2-2m\ne0\end{matrix}\right.\) <=> \(m\in[\dfrac{-1}{2};\dfrac{3}{2})U\left(\dfrac{3}{2};\infty\right)\)

\(\left\{{}\begin{matrix}\dfrac{1}{x_1+1}+\dfrac{1}{x_2+1}=\dfrac{x_1+x_2+2}{x_1x_2+\left(x_1+x_2\right)+1}=\dfrac{4}{3-2m}\\\dfrac{1}{x_1+1}.\dfrac{1}{x_2+1}=\dfrac{1}{3-2m}\end{matrix}\right.\)

phương trình cần tìm

\(g\left(x\right)=x^2-\dfrac{4}{3-2m}+\dfrac{1}{3-2m}\) \(\Leftrightarrow\left\{{}\begin{matrix}m\in[\dfrac{-1}{2};\dfrac{3}{2})U\left(\dfrac{3}{2};\infty\right)\\\left(2m-3\right)x^2+4x-1=0\end{matrix}\right.\)

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)

4 tháng 4 2019

\(\Delta'=\left(m-1\right)^2-m^2+m-1=m^2-2m+1-m^2+m-1=-m.\)

Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow-m\ge0\Leftrightarrow m\le0\)

Theo vi ét:

\(\hept{\begin{cases}x_1+x_2=-2\left(m-1\right)\\x_1.x_2=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\)

\(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow x_1+x_2+2\left|x_1.x_2\right|=16\)

\(\Leftrightarrow1-2m+2\left|m^2-m+1\right|=16\)

\(\Leftrightarrow1-2m+2m^2-2m+2=16\)(Vì \(m^2-m+1>0\Rightarrow\left|m^2-m+1\right|=m^2-m+1\))

\(\Leftrightarrow2m^2-4m-13=0\)

Đến đây bạn tự giải \(\Delta\)tìm m đối chiếu điều kiện là ok.

DD
31 tháng 5 2021

Để phương trình có hai nghiệm thì \(\Delta'>0\).

\(\Delta'=\left(m-2\right)^2+\left(m-1\right)=m^2-3m+3=\left(m-\frac{3}{2}\right)^2+\frac{3}{4}>0\)

Do đó phương trình luôn có hai nghiệm phân biệt \(x_1,x_2\).

Theo Viet: 

\(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1x_2=-m+1\end{cases}}\)

\(x_1^2-2x_1x_2+x_2^2+4x_1^2x_2^2=\left(x_1+x_2\right)^2-4x_1x_2+4x_1^2x_2^2\)

\(=4\left(m-2\right)^2+4\left(m-1\right)+4\left(m-1\right)^2=4\left(2m^2-5m+4\right)=4\)

\(\Leftrightarrow2m^2-5m+4=1\)

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{3}{2}\\m=1\end{cases}}\)

14 tháng 5 2020

Xét \(x^2-\left(2m+1\right)x-3=0\left(1\right)\)

PT (1) có a.c=\(1\cdot\left(-3\right)=-3< 0\)

=> PT (1) luôn có 2 nghiệm phân biệt trái dấu với mọi m

Mà \(x_1< x_2\left(gt\right)\)nên x1<0 và x2>0 => \(\hept{\begin{cases}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{cases}}\)

Áp dụng hệ thức Vi-et ta có \(x_1+x_2=2m+1\)

Theo bài ra \(\left|x_1\right|-\left|x_2\right|=5\Rightarrow-x_1-x_2=5\Leftrightarrow x_1+x_2=-5\Leftrightarrow2m+1=-5\Leftrightarrow m=-3\)