Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^2-11x-26=0\)
nên a=1; b=-11; c=-26
Áp dụng hệ thức Viet, ta được:
\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-11\right)}{1}=11\)
và \(x_1x_2=\dfrac{c}{a}=\dfrac{-26}{1}=-26\)
A=(x1-x2)^2-x1^2+x1(x1+x2)
=(x1-x2)^2+x1x2
=(x1+x2)^2-x1x2
=(1/2)^2-(-1/4)=1/4+1/4=1/2
a: x1+x2=-2; x1x2=-4
x1+x2+2+2=-2+2+2=2
(x1+2)(x2+2)=x1x2+2(x1+x2)+4
=-4+2*(-2)+4=-4
Phương trình cần tìm là x^2-2x-4=0
b: \(\dfrac{1}{x_1+1}+\dfrac{1}{x_2+1}=\dfrac{x_1+x_2+2}{\left(x_1+1\right)\left(x_2+1\right)}\)
\(=\dfrac{x_1+x_2+2}{x_1x_2+\left(x_1+x_2\right)+1}\)
\(=\dfrac{-2+2}{-4+\left(-2\right)+1}=0\)
\(\dfrac{1}{x_1+1}\cdot\dfrac{1}{x_2+1}=\dfrac{1}{x_1x_2+x_1+x_2+1}=\dfrac{1}{-4-2+1}=\dfrac{-1}{5}\)
Phương trình cần tìm sẽ là; x^2-1/5=0
c: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{x_1^2+x_2^2}{x_1x_2}=\dfrac{\left(-2\right)^2-2\cdot\left(-4\right)}{-4}=\dfrac{4+8}{-4}=-3\)
x1/x2*x2/x1=1
Phương trình cần tìm sẽ là:
x^2+3x+1=0
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3}{2}\\x_1x_2=-\dfrac{1}{2}\end{matrix}\right.\)
\(A=\dfrac{1}{x_1-3}+\dfrac{1}{x_2-3}=\dfrac{x_2-3+x_1-3}{\left(x_1-3\right)\left(x_2-3\right)}=\dfrac{x_1+x_2-6}{x_1x_2-3\left(x_1+x_2\right)+9}\)
\(=\dfrac{\dfrac{3}{2}-6}{-\dfrac{1}{2}-3.\dfrac{3}{2}+9}=...\) (em tự bấm máy)
\(B=x_1^2x_2-4-x_1x_2+x_1x_2^2=x_1x_2\left(x_1+x_2\right)-4-x_1x_2\)
\(=-\dfrac{1}{2}.\dfrac{3}{2}-4-\left(-\dfrac{1}{2}\right)=...\)
\(C=1-\left(x_1^2+x_2^2\right)=1-\left(x_1+x_2\right)^2+2x_1x_2=1-\left(\dfrac{3}{2}\right)^2+2.\left(-\dfrac{1}{2}\right)=...\)
\(D=x_1^3x_2^3+x_1^3+x_2^3=\left(x_1x_2\right)^3+\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(=\left(-\dfrac{1}{2}\right)^3+\left(\dfrac{3}{2}\right)^3-3.\left(-\dfrac{1}{2}\right).\dfrac{3}{2}=...\)
\(x^2-2x-1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}u=x_1+\left(x_2\right)^2\\v=x_2+\left(x_1\right)^2\end{matrix}\right.\)
\(\Rightarrow\)\(\left\{{}\begin{matrix}u+v=\left(x_1+x_2\right)+\left(x_2+x_1\right)^2-2x_1x_2\\uv=2x_1x_2+x_1^3+x_2^3=2x_1x_2+\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u+v=8\\uv=12\end{matrix}\right.\)
=>u và v là nghiệm của pt \(t^2-8t+12=0\)
\(x^2-2x-m^2-1=0\)
Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=-m^2-1\end{matrix}\right.\)
Ta có :
\(x_1^2+x_2^2=20\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)
\(\Leftrightarrow2^2-2.\left(-m^2-1\right)=20\)
\(\Leftrightarrow4+2m^2+2-20=0\)
\(\Leftrightarrow2m^2=14\)
\(\Leftrightarrow m=7\)
\(\Leftrightarrow m=\pm\sqrt{7}\)
\(\Delta'=m^2>0\Rightarrow m\ne0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2+1\end{matrix}\right.\)
\(x_1^2+x_2=2\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2+x_2=2\)
\(\Leftrightarrow2x_1-\left(-m^2+1\right)+x_2=2\)
\(\Leftrightarrow2x_1+x_2=-m^2+3\)
Kết hợp \(x_1+x_2=2\Rightarrow\left\{{}\begin{matrix}2x_1+x_2=-m^2+3\\x_1+x_2=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=-m^2+1\\x_2=m^2+1\end{matrix}\right.\)
Thế vào \(x_1x_2=-m^2+1\)
\(\Rightarrow\left(-m^2+1\right)\left(m^2+1\right)=-m^2+1\)
\(\Rightarrow\left[{}\begin{matrix}-m^2+1=0\\m^2+1=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\pm1\\m=0\left(loại\right)\end{matrix}\right.\)
Sửa đề: \(x^2-2x-15=0\)(1)
a) Gọi \(x_1\) và \(x_2\) là hai nghiệm của phương trình (1)
Áp dụng hệ thức Viet, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2}{1}=2\\x_1\cdot x_2=-\dfrac{15}{1}=-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+x_2\right)^2=4\\x_1\cdot x_2=-15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2\cdot x_1\cdot x_2=4\\x_1\cdot x_2=-15\end{matrix}\right.\)
\(\Leftrightarrow x_1^2+x_2^2=4-2\cdot\left(-15\right)=34\)