Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(x^2_2=2mx_2-m^2+m-1\)
nên ta có \(2m\left(x_1+x_2\right)-m^2+m-1=10m-1\)
theo vi-et ta có :\(x_1+x_2=2m\Rightarrow3m^2-9m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=3\end{cases}}\)
thay nguowijc lại thấy m=3 thỏa mãn đề bài
4.
(1) => y=2m-mx thay vào (2) ta được x+m(2m-mx)=m+1
<=> x-m2x=-2m2+m+1
<=> x(1-m)(1+m)=-(m-1)(1+2m)
với m=-1 thì pt vô nghiệm
với m=1 thì pt vô số nghiệm => có nghiệm nguyên => chọn
với m\(\ne\pm\) 1 thì x=\(\frac{-2m-1}{m+1}\)=\(-2+\frac{1}{m+1}\)
=> y=2m-mx=xm-m(-2+\(\frac{1}{m+1}\)) =2m+2m-\(\frac{m}{m+1}\)=4m-1+\(\frac{1}{m+1}\)
để x y nguyên thì \(\frac{1}{m+1}\)nguyên ( do m nguyên)
=> m+1\(\in\)Ư(1)={1;-1}
=> m\(\in\){0;-2} mà m nguyên âm nên m=-2
vậy m=-2 thì ...
P/s hình như 1 2 3 sai đề
a)
+) Với m = 0 thay vào phương trình ta có: 1 = 0 => loại
+) Với m khác 0
\(\Delta'=m^2-m=m\left(m-1\right)\)
Để phương trình có nghiệm điều kiện là: \(m\left(m-1\right)\ge0\)
TH1: m \(\ge\)0 và m - 1 \(\ge\)0
<=> m \(\ge\) 0 và m \(\ge\)1
<=> m \(\ge\)1
TH2: m \(\le\) 0 và m - 1 \(\le\)0
<=> m \(\le\)0 và m \(\le\)1
<=> m \(\le\)0
Đối chiếu điều kiên m khác 0
Vậy m < 0 hoặc m \(\ge\)1
+) Tính nghiệm của phương trình theo m. Tự làm áp dụng công thức
b) Gọi \(x_1;x_2\) là hai nghiệm của phương trình
Theo định lí vi ét ta có:
\(x_1x_2=\frac{1}{m};x_1+x_2=\frac{2m}{m}=2\)
Không mất tính tổng quát ta g/s: \(x_1=2x_2\)
=> \(3x_2=2\Leftrightarrow x_2=\frac{2}{3}\)=> \(x_1=\frac{4}{3}\)
Ta có: \(\frac{4}{3}.\frac{2}{3}=\frac{1}{m}\)
<=> \(m=\frac{9}{8}\)( thỏa mãn a )
Thử lại thỏa mãn
Vậy m = 9/8
denta , =(m -1) -(m +1 )
=\(m^2-2m+1-m-1=m^2-3m\)
phương trình có hai nghiệm phân biệt
\(\Leftrightarrow denta>0.\)
\(\Leftrightarrow m^2-3m>0\)
\(\Leftrightarrow m\left(m-3\right)>0\)
\(\Leftrightarrow m>3ho\text{ặ}cm< 0\)
giúp mình với , mình cảm ơn ạ !
\(pt:x^2-2mx+m-4=0\left(1\right)\)
\(\Delta'=\left(-m\right)^2-\left(m-4\right)=m^2-m+4=m^2-2.\dfrac{1}{2}m+\dfrac{1}{4}-\dfrac{1}{4}+4\)
\(=\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{6}>0\left(\forall m\right)\)
=> \(pt\left(1\right)\) luôn có 2 nghiệm phân biệt x1,x2 \(\forall m\)
\(Theo\) \(\)Vi ét\(=>\left\{{}\begin{matrix}x1+x2=2m\left(1\right)\\x1x2=m-4\left(2\right)\end{matrix}\right.\)
từ(1)
với \(x1x2=m-4=>m=x1x2+4\)
thay \(m=x1x2+4\) vào (1)\(\)\(=>x1+x2=2\left(x1x2+4\right)\)
\(< =>x1+x2=2x1x2+8\)
\(< =>x1+x2-2x1x2=8\)
\(< =>2x1+2x2-4x1x2=16\)
\(=>2x1\left(1-2x2\right)-\left(1-2x2\right)=15\)
\(< =>\left(2x1-1\right)\left(1-2x2\right)=16\)(3)
để (3) nguyên \(< =>\left(2x1-1\right)\left(1-2x2\right)\inƯ\left(16\right)=\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)
đến đây bạn tự lập bảng giá trị để tìm x1,x2 rồi từ đó thay thế x1,x2 vào(2) để tìm m nhé (mik ko làm nữa dài lắm)