\(x^2-2mx-m^2-5=0\)(*)

1. Biết phương trình có nghiệm là 3,tìm m...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mk làm cách dễ vô cùng nhá

Xét phương trình : \(\(\(x^2-2mx-m^2-5=0\)\)\)(*)

Vì 3 là một nghiệm của phương trình nên thay vào ta được :

\(\(\(3^2-2.m.3-m^2-5=0\)\)\)

\(\(\(\Leftrightarrow9-6m-m^2-5=0\)\)\)

\(\(\(\Leftrightarrow-m^2-6m+4=0\)\)\)

\(\(\(\Leftrightarrow m^2+6m-4=0\)\)\)

Ta có \(\(\(\Delta^/=\left(3\right)^2-1.\left(-4\right)\)\)\)

\(\(\(=9+4=13\Rightarrow\sqrt{\Delta^/}=\sqrt{13}\)\)\)

\(\(\(\Rightarrow m_1=-3+\sqrt{13};m_2=-3-\sqrt{13}\)\)\)

Với \(\(\(m=-3+\sqrt{13}\Rightarrow x_1=3;x_2=-9+2\sqrt{13}\)\)\)

Với \(\(m=-3-\sqrt{13}\Rightarrow x_1=3;x_2=-9-2\sqrt{13}\)\)

K biết sai chỗ nào không ... bn xem lại nhá

20 tháng 6 2019

umk umk xin lỗi các bạn. Nhìn nhầm thành phương trình có 3 nghiệm :)

+ với x =1

=> PT => \(m^2-m+7+3m^2-3m-6-1=0.\)

\(\Leftrightarrow4m^2-4m=0\Leftrightarrow4m\left(m-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}.\)

+Với m =0

pt => \(x^3-7x+6=0\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)-\left(6x-6\right)=0.\)

\(\left(x-1\right)\left(x^2+x-6\right)=0\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)

x-1=0 => x =1

x-2 =0 => x =2

x+3 =0 => x =- 3

tương tự với m = 1 nhé

13 tháng 2 2020

Ai làm đc câu nào thì làm giúp mình với ạ, cảm ơn trc:(((

14 tháng 2 2020

\(1,3x-5x+5=-8\)

\(\Leftrightarrow-2x+5+8=0\)

\(\Leftrightarrow-2x=-13\)

\(\Leftrightarrow x=\frac{13}{2}\)

4 tháng 3 2020

a) Phương trình có nghiệm bằng 1 khi \(1+a-4-4=0\)

\(\Rightarrow a=7\)

b) Khi a = 7 thì phương trình trở thành \(x^3+7x^2-4x-4=0\)

\(\Leftrightarrow-x^3-7x^2+4x+4=0\)

\(\Leftrightarrow\left(-x^3-8x^2-4x\right)+\left(x^2+8x+4\right)=0\)

\(\Leftrightarrow-x\left(x^2+8x+4\right)+\left(x^2+8x+4\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(x^2+8x+4\right)=0\)

+) 1 - x = 0 thì x = 1

+) \(x^2+8x+4=0\)

\(\Leftrightarrow x^2+8x+16-12=0\Leftrightarrow\left(x+4\right)^2=12\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=\sqrt{12}\\x+4=-\sqrt{12}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{12}-4\\x=-\sqrt{12}-4\end{cases}}\)

Vậy phương trình có 3 nghiệm \(\left\{1;\pm\sqrt{12}-4\right\}\)

4 tháng 3 2019

Ý a mình viết nhầm để có nghiệm là -2 nha các bạn

4 tháng 3 2019

a) Thay x = -2 vào:

\(8+2\left(4m-1\right)+15-m=0\)

\(\Leftrightarrow21+7m=0\Leftrightarrow m=-3\)

b)Thay m = - 3 vào pt: \(2x^2+13x+18=0\Leftrightarrow\left(x+2\right)\left(2x+9\right)=0\)

Đến đây bí.