Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^{2^{ }}+2\left(m-1\right)x-6m-7=0\left(1\right)\)
a) \(Dental=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-6m-7\right)\)
\(< =>4\cdot\left(m^2-2m+1\right)+24m+28\)
\(< =>4m^2-8m+4+24m+28\)
\(< =>4m^2+16m+32\)
\(< =>\left(2m+4\right)^2+16>0\) với mọi m
Vậy phương (1) luôn có 2 nghiệm phân biệt với mọi m
b) Theo định lí vi ét ta có:
x1+x2= \(\dfrac{-2\left(m-1\right)}{1}=-2m+1\)
x1x2= \(-6m-7\)
quy đồng
khử mẫu
tách sao cho có tích và tổng
thay x1x2 x1+x2
kết luận
mặt xấu vl . . .
a: \(\text{Δ}=\left(5m-1\right)^2-4\left(6m^2-2m\right)\)
\(=25m^2-10m+1-24m^2+8m=m^2-2m+1=\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có nghiệm
b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=1\)
\(\Leftrightarrow\left(5m-1\right)^2-2\left(6m^2-2m\right)=1\)
\(\Leftrightarrow25m^2-10m+1-12m^2+4m-1=0\)
\(\Leftrightarrow13m^2-6m=0\)
=>m(13m-6)=0
=>m=0 hoặc m=6/13
Cho phương trình: x^2 - 2(m-1)x + m-3=0 (m là tham số). Tìm m để phương trình có hai nghiệm phân biệt cùng dương
b) Δ = m - 2 2 -4.(-m + 1) = m 2 - 4m + 4 + 4m - 4 = m 2 ≥ 0 ∀ m
⇒ Phương trình đã cho luôn có nghiệm với mọi m
a) \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\\ =m^2+6m+9-4m\\ =m^2+2m+9\\ =\left(m+1\right)^2+8>0\forall m\)
Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m.
b) Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=m\end{matrix}\right.\)
Mà \(x_1^2+x_2^2=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\\ \Leftrightarrow\left(m+3\right)^2-2m=6\\ \Leftrightarrow m^2+6m+9-2m=6\\ \Leftrightarrow m^2+4m+3=0\\ \Leftrightarrow\left(m+1\right)\left(m+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)
Vậy \(m\in\left\{-1;-3\right\}\) là các giá trị cần tìm.
a, Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\)
\(=m^2+6m+9-4m\)
\(=m^2+2m+9\)
\(=m^2+2m+1+8\)
\(=\left(m+1\right)^2+8\)
Lại có: \(\left(m+1\right)^2\ge0\forall m\Rightarrow\left(m+1\right)^2+8\ge8\forall m\)
Vậy phương trình luôn có 2 nghiêm phân biệt
b, Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1+x_2=m\end{matrix}\right.\)
Theo bài ra:
\(x_1^2+x_2^2=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow\left(m+3\right)^2-2m=6\)
\(\Leftrightarrow m^2+6m+9-2m=6\)
\(\Leftrightarrow m^2+6m+9-2m-6=0\)
\(\Leftrightarrow m^2+4m+3=0\)
\(\Leftrightarrow m^2+m+3m+3=0\)
\(\Leftrightarrow\left(m^2+m\right)+\left(3m+3\right)=0\)
\(\Leftrightarrow m\left(m+1\right)+3\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\m+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)
Vậy với m=-1 hoặc m=-3 thì phương trinh trên thỏa mãn hệ thức
a)Ta có:
`\Delta'`
`=(m+1)^2-6m+4`
`=m^2+2m+1-6m+4`
`=m^2-4m+5`
`=(m-2)^2+1>=1>0(AA m)`
`=>`phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
Câu b đề không rõ :v
1) Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\left(m-5\right)\)
\(=\left(2m-2\right)^2-4\left(m-5\right)\)
\(=4m^2-8m+4-4m+20\)
\(=4m^2-12m+24\)
\(=4m^2-12m+9+15\)
\(=\left(2m-3\right)^2+15>0\forall m\)
Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m
2) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=m-5\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1-x_2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_1=2m+1\\x_1-x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+1}{2}\\x_2=x_1-3=\dfrac{2m+1}{2}-\dfrac{6}{2}=\dfrac{2m-5}{2}\end{matrix}\right.\)
Ta có: \(x_1\cdot x_5=m-5\)
\(\Leftrightarrow\left(2m+1\right)\left(2m-5\right)=4\left(m-5\right)\)
\(\Leftrightarrow4m^2-10m+2m-5=4m-20\)
\(\Leftrightarrow4m^2-8m-5-4m+20=0\)
\(\Leftrightarrow4m^2-12m+15=0\)(vô lý)
Vậy: Không có giá trị nào của m để phương tình có hai nghiệm mà hiệu của chúng bằng 3
a) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-m\right)\)
\(=\left(2m-2\right)^2+4m\)
\(=4m^2-8m+4+4m\)
\(=4m^2-4m+4\)
\(=4m^2-4m+1+3\)
\(=\left(2m-1\right)^2+3>0\forall x\)
Do đó: Phương trình luôn có hai nghiệm x1,x2 với mọi m(Đpcm)
b) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=-m\end{matrix}\right.\)
Ta có: \(y_1+y_2=x_1+\dfrac{1}{x_2}+x_2+\dfrac{1}{x_1}\)
\(=\left(x_1+x_2\right)+\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)\)
\(=\left(2m-2\right)+\dfrac{2m-2}{-m}\)
\(=2m-2-\dfrac{2m-2}{m}\)
\(=\dfrac{2m^2-2m-2m+2}{m}\)
\(=\dfrac{2m^2-4m+2}{m}\)
\(=\dfrac{2\left(m^2-2m+1\right)}{m}\)
\(=\dfrac{2\left(m-1\right)^2}{m}\)
Ta có: \(y_1y_2=\left(x_1+\dfrac{1}{x_2}\right)\left(x_2+\dfrac{1}{x_1}\right)\)
\(=x_1x_2+2+\dfrac{1}{x_1x_2}\)
\(=-m+2+\dfrac{1}{-m}\)
\(=-m+2-\dfrac{1}{m}\)
\(=\dfrac{-m^2}{m}+\dfrac{2m}{m}-\dfrac{1}{m}\)
\(=\dfrac{-m^2+2m-1}{m}\)
\(=\dfrac{-\left(m-1\right)^2}{m}\)
Phương trình đó sẽ là:
\(x^2-\dfrac{2\left(m-1\right)^2}{m}x-\dfrac{\left(m-1\right)^2}{m}=0\)
Ptr có:`\Delta=(-m)^2-4(m-3)=m^2-4m+12=(m-2)^2+8 > 0 AA m`
`=>` Ptr luôn có nghiệm `AA m`
`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=m),(x_1.x_2=c/a=m-3):}`
Ta có:`A=2(x_1 ^2+x_2 ^2)-x_1.x_2`
`<=>A=2[(x_1+x_2)^2-2x_1.x_2]-x_1.x_2`
`<=>A=2[m^2-2(m-3)]-(m-3)`
`<=>A=2(m^2-2m+6)-m+3`
`<=>A=2m^2-4m+12-m+3=2m^2-5m+15`
`<=>A=2(m^2-5/2+15/2)`
`<=>A=2[(m-5/4)^2+95/16]`
`<=>A=2(m-5/4)^2+95/8`
Vì `2(m-5/4)^2 >= 0 AA m<=>2(m-5/4)^2+95/8 >= 95/8 AA m`
Hay `A >= 95/8 AA m`
Dấu "`=`" xảy ra`<=>(m-5/4)^2=0<=>m=5/4`
Vậy `GTN N` của `A` là `95/8` khi `m=5/4`
Áp dụng Delta '
\(a=1\)
\(b=-2\left(m+2\right)\Rightarrow b'=\frac{-2\left(m+2\right)}{2}=-m-2\)
\(c=6m+3\)
\(\Rightarrow\Delta'=\left(-m-2\right)^2-1.\left(6m+3\right)\)
\(=m^2+4m+4-6m-3\)
\(=m^2-2m+1=\left(m-1\right)^2\ge0\)
Vậy phương trình luôn có nghiệm với mọi m.
phương trình bằng 111111111 + 111111111 = 222222222