\(^2\) + 2(m+2)x - (4m+12) = 0

a)Chứng minh rằng phương trình lu...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2021

a,Có \(\Delta=4\left(m+2\right)^2-4.-\left(4m+12\right)=4m^2+32m+64=4\left(m+4\right)^2\ge0\forall m\)

=> Phương trình luôn có nghiệm với mọi m

b,Phương trình có nghiệm \(\left[{}\begin{matrix}x=\dfrac{-2\left(m+2\right)+2\left(m+4\right)}{2}=2\\x=\dfrac{-2\left(m+2\right)-2\left(m+4\right)}{2}=-2m-6\end{matrix}\right.\) (ở đây không cần chia trường hợp của m bởi khi chia trường hợp thì x chỉ đổi giá trị cho nhau)

TH1: \(x_1=x_2^2\Leftrightarrow4=\left(-2m-6\right)^2\)\(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=-4\end{matrix}\right.\) (Thay vào pt thấy không thỏa mãn)

TH2:\(x_1=x_2^2\Leftrightarrow-2m-6=2^2\)\(\Leftrightarrow m=-5\) (Thay vào pt thấy thỏa mãn)

Vậy ...

5 tháng 2 2022

a) Xét phương trình thứ nhất, có \(\Delta_1=b^2-4ac\)

Xét phương trình thứ hai, có \(\Delta_2=b^2-4ca=b^2-4ac\)

Từ đó ta có \(\Delta_1=\Delta_2\), do đó, khi phương trình (1) có nghiệm \(\left(\Delta_1\ge0\right)\)thì \(\Delta_2\ge0\)dẫn đến phương trình (2) cũng có nghiệm và ngược lại.

Vậy 2 phương trình đã cho cùng có nghiệm hoặc cùng vô nghiệm.

b) Vì \(x_1,x_2\)là 2 nghiệm của phương trình (1) nên theo định lý Vi-ét, ta có \(x_1x_2=\frac{c}{a}\)

Tương tự, ta có \(x_1'x_2'=\frac{a}{c}\)

Từ đó \(x_1x_2+x_1'x_2'=\frac{c}{a}+\frac{a}{c}\)

Nếu \(\hept{\begin{cases}a>0\\c>0\end{cases}}\)hay \(\hept{\begin{cases}a< 0\\c< 0\end{cases}}\)thì \(\hept{\begin{cases}\frac{c}{a}>0\\\frac{a}{c}>0\end{cases}}\), khi đó có thể áp dụng bất đẳ thức Cô-si cho 2 số dương \(\frac{c}{a}\)và \(\frac{a}{c}\):

\(\frac{c}{a}+\frac{a}{c}\ge2\sqrt{\frac{c}{a}.\frac{a}{c}}=2\), dẫn đến \(x_1x_2+x_1'x_2'\ge2\)

Nhưng nếu \(\hept{\begin{cases}a>0\\c< 0\end{cases}}\)hay \(\hept{\begin{cases}a< 0\\c>0\end{cases}}\)thì \(\hept{\begin{cases}\frac{c}{a}< 0\\\frac{a}{c}< 0\end{cases}}\),như vậy \(\frac{c}{a}+\frac{a}{c}< 0< 2\)dẫn đến \(x_1x_2+x_1'x_2'< 2\)

Như vậy không phải trong mọi trường hợp thì \(x_1x_2+x_1'x_2'>2\)

AH
Akai Haruma
Giáo viên
18 tháng 3 2018

Lời giải:

Để pt có hai nghiệm phân biệt thì \(\Delta'=(m-1)^2-(m^2-3)>0\)

\(\Leftrightarrow 4-2m>0\Leftrightarrow m< 2\)

Khi đó áp dụng định lý Viete về pt bậc 2: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2-3\end{matrix}\right.(*)\)

a) \(x_1-x_2=2\Rightarrow (x_1-x_2)^2=4\)

\(\Leftrightarrow x_1^2+x_2^2-2x_1x_2=4\Leftrightarrow x_1^2+x_2^2+2x_1x_2-4x_1x_2=4\)

\(\Leftrightarrow (x_1+x_2)^2-4x_1x_2=4\)

\(\Leftrightarrow 4(m-1)^2-4(m^2-3)=4\)

\(\Leftrightarrow 8m=12\Leftrightarrow m=\frac{3}{2}\) (thỏa mãn)

b) \(x_1x_2-x_1-x_2=11\)

\(\Leftrightarrow x_1x_2-(x_1+x_2)=11\)

\(\Leftrightarrow m^2-3-2(m-1)=11\)

\(\Leftrightarrow m^2-2m-12=0\Leftrightarrow \left[\begin{matrix} m=1+\sqrt{13}\\ m=1-\sqrt{13}\end{matrix}\right.\)

Vì \(m<2\Rightarrow m=1-\sqrt{13}\)

c)Ta có: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2-3\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x_1+x_2+2=2m\\ x_1x_2+3=m^2\end{matrix}\right.\)

Suy ra \( (x_1+x_2+2)^2=4(x_1x_2+3)(=4m^2)\)

\(\Leftrightarrow x_1^2+x_2^2+4+2x_1x_2+4(x_1+x_2)=4x_1x_2+12\)

\(\Leftrightarrow x_1^2+x_2^2-2x_1x_2+4(x_1+x_2)-8=0\)

Đây chính là biểu thức (không phụ thuộc m) cần tìm.

21 tháng 3 2018

Cảm ơn cô (thầy) ạ!

NV
14 tháng 5 2020

\(\Delta=9-4m\ge0\Rightarrow m\le\frac{9}{4}\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=m\end{matrix}\right.\)

a/ \(\left\{{}\begin{matrix}x_1-x_2=6\\x_1+x_2=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3}{2}\\x_2=-\frac{9}{2}\end{matrix}\right.\)

\(x_1x_2=m\Rightarrow m=\frac{3}{2}.\left(-\frac{9}{2}\right)=-\frac{27}{4}\)

b/ \(\left\{{}\begin{matrix}3x_1+2x_2=20\\x_1+x_2=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=26\\x_2=-29\end{matrix}\right.\)

\(\Rightarrow m=x_1x_2=-29.26=-754\)

c/ \(\left\{{}\begin{matrix}\left(x_1-x_2\right)\left(x_1+x_2\right)=34\\x_1+x_2=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=-\frac{34}{3}\\x_1+x_2=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-\frac{43}{6}\\x_2=\frac{25}{6}\end{matrix}\right.\) \(\Rightarrow m=-\frac{1075}{36}\)

d/ \(\left\{{}\begin{matrix}x_1=2x_2\\x_1+x_2=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=-1\\x_1=-2\end{matrix}\right.\) \(\Rightarrow m=2\)

e/ Giống câu c, bạn tự giải