Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đã cho có nghiệm phân biệt khi :
\(\Delta'=m^2-\left(m^2+2m+3\right)=-2m-3>0\)
\(\Leftrightarrow m< -\dfrac{3}{2}\)(*)
Hệ thức Viette : \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=m^2+2m+3\end{matrix}\right.\)
Có \(x_1^3+x_2^3=108\)
\(\Leftrightarrow\left(x_1+x_2\right).\left(x_1^2-x_1x_2+x_2^2\right)=108\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=108\)
\(\Leftrightarrow-8m^3+6m\left(m^2+2m+3\right)=108\)
\(\Leftrightarrow m^3-6m^2-9m+54=0\)
\(\Leftrightarrow\left(m-6\right).\left(m-3\right).\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=6\\m=\pm3\end{matrix}\right.\)
Kết hợp (*) được m = -3 thỏa mãn
Δ=(2m)^2-4(m^2+2m+3)
=4m^2-4m^2-8m-12=-8m-12
Để PT có 2 nghiệm pb thì -8m-12>0
=>-8m>12
=>m<-3/2
x1^3+x2^3=108
=>(x1+x2)^3-3x1x2(x1+x2)=108
=>(-2m)^3-3(m^2+2m+3)*(-2m)=108
=>-8m^3+6m(m^2+2m+3)=108
=>-8m^3+6m^3+12m^2+18m-108=0
=>-2m^3+12m^2+18m-108=0
=>-2m^2(m-6)+18(m-6)=0
=>(m-6)(-2m^2+18)=0
=>m=-3
Phương trình x2 – 2(m + 1)x + 2m = 0 có a = 1 ≠ 0 và
∆ ' = ( m + 1 ) 2 – 2 m = m 2 + 1 > 0 ; m nên phương trình luôn có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có x 1 + x 2 = 2 m + 1 x 1 . x 2 = 2 m
Xét x 1 3 + x 2 3 = 8 ( x 1 + x 2 ) 3 − 3 x 1 . x 2 ( x 1 + x 2 ) = 8
⇔ [ 2 ( m + 1 ) ] 3 – 3 . 2 m . [ 2 ( m + 1 ) ] = 8
8 ( m 3 + 3 m 2 + 3 m + 1 ) – 6 m ( 2 m + 2 ) = 8 ⇔ 8 m 3 + 12 m 2 + 12 m = 0
⇔ m ( 2 m 2 + 3 m + 3 ) = 0
⇔ m = 0 2 m 2 + 3 m + 3 = 0
Phương trình 2 m 2 + 3 m + 3 = 0 c ó ∆ 1 = 3 2 – 4 . 2 . 3 = − 15 < 0 nên phương trình này vô nghiệm
Vậy m = 0 là giá trị cần tìm
Đáp án: C
Để pt có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4-4\left(m-1\right)\ge0\)\(\Leftrightarrow2\ge m\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(1\right)\\x_1x_2=m-1\end{matrix}\right.\)
\(x_1^4-x_1^3=x_2^4-x_2^3\)
\(\Leftrightarrow\left(x_1^4-x_2^4\right)-\left(x_1^3-x_2^3\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2\right)-\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left[2\left(x_1^2+x_2^2\right)-x_1^2-x_1x_2-x_2^2\right]=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)=0\)
\(\Leftrightarrow x_1-x_2=0\) (2) ( vì \(x_1^2-x_1x_2+x_2^2>0;\forall x,y\))
Từ (1) (2) \(\Rightarrow x_1=x_2=1\)
\(\Rightarrow x_1x_2=m-1=1\) \(\Leftrightarrow m=2\) (Thỏa)
Vậy...
Phương trình x 2 − mx – m − 1 = 0 có a = 1 ≠ 0 và = m 2 – 4(m – 1)
= ( m – 2 ) 2 ≥ 0 ; m nên phương trình luôn có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có
Xét
x 1 3 + x 2 3 = − 1 ⇔ ( x 1 + x 2 ) 3 − 3 x 1 . x 2 ( x 1 + x 2 ) = − 1 ⇔ m 3 – 3 m ( - m – 1 ) = − 1
⇔ m 3 + 3 m 2 + 3 m + 1 = 0 ⇔ ( m + 1 ) 3 = 0 ⇔ m = − 1
Vậy m = −1 là giá trị cần tìm.
Đáp án: B
Để PT có hai nghiệm x 1 ; x 2 thì: Δ = 25 − 12 m + 4 ≥ 0 ⇔ 29 − 12 m ≥ 0 ⇔ m ≤ 29 12
Ta có: x 1 3 − x 2 3 + 3 x 1 x 2 = 75 ⇔ ( x 1 − x 2 ) [ ( x 1 + x 2 ) 2 − x 1 x 2 ] + 3 x 1 x 2 − 75 = 0 (*)
Theo định lý Vi-et ta có: x 1 + x 2 = − 5 x 1 x 2 = 3 m − 1 thay vào (*) ta được
( x 1 − x 2 ) ( 26 − 3 m ) + 3 ( 3 m − 26 ) = 0 ⇔ ( x 1 − x 2 − 3 ) ( 26 − 3 m ) = 0 ⇔ m = 26 3 x 1 − x 2 − 3 = 0
Kết hợp với điều kiện thì m = 26/3 không thỏa mãn.
Kết hợp x 1 − x 2 − 3 = 0 với hệ thức Vi - et ta có hệ: x 1 − x 2 − 3 = 0 x 1 + x 2 = − 5 x 1 x 2 = 3 m − 1 ⇔ x 1 = − 1 x 2 = − 4 m = 5 3 ( t / m ) .
Vậy m = 5/3 là giá trị cần tìm.
Để phương trình 1 có 2 nghiệm phân biệt
=> \(\Delta,>0\) <=> \(\left[-\left(m-1\right)\right]^2-\left(-2m+5\right)>0\)
<=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)
=> Theo hệ thức Vi ét ta có
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\circledast\\x_1.x_2=-2m+5\circledast\circledast\end{matrix}\right.\)
Theo bài ra ta có
\(x_1-x_2=-2\circledcirc\)
Từ \(\circledast vaf\circledcirc\) ta có hệ pt
\(\left\{{}\begin{matrix}x1+x2=2m-2\\x1-x2=-2\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x1=m-2\\x2=m\end{matrix}\right.\)
Thay x1 và x2 vào \(\circledast\circledast\)ta dc
\(\left(m-2\right)m=-2m+5\)
<=> m=\(\left[{}\begin{matrix}-\sqrt{5}\\\sqrt{5}\end{matrix}\right.\left(tm\right)\)
Vậy ...