Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta=\left(m-1\right)^2-4.\left(-m^2+m-2\right)=5m^2-6m+9=4m^2+\left(m-3\right)^2>0\)
nên phương trình ( 1 ) luôn có hai nghiệm phân biệt
b) PT ( 1 ) có hai nghiệm trái dấu
\(\Leftrightarrow\hept{\begin{cases}\Delta\ge0\\P< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}4m^2+\left(m-3\right)^2\ge0\\-m^2+m-2< 0\end{cases}\Leftrightarrow\forall m}\)
để pt luôn có 2 no trái dấu => a.c <0
=> -m2 -2 < 0
=> -m2 < 2 [do m2 >0 hoặc m2 = 0]
=> m2 > -2 với mọi giá trị của m
KL : với m2 > -2 thì pt luôn có 2 no x1 , x2 trái dấu
a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).
Suy ra phương trình (1) luôn có nghiệm với mọi m.
b) Theo Vi-et ta có:
\(x_1+x_2=2m,x_1.x_2=m-4\)
Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)
\(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)
\(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)
\(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)
\(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)
\(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)
\(\Leftrightarrow m=0\)
a/
Ta có: \(c.a=-m^2+m-2=-\left(m-\frac{1}{2}\right)^2-\frac{7}{4}<\)\(0\) với mọi số thực m.
=> pt luôn có 2 nghiệm trái dấu
b/
Theo Viet: \(x_1+x_2=m-1;\text{ }x_1.x_2=-m^2+m-2\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(m-1\right)^2-2\left(-m^2+m-2\right)=3m^2-4m+5\)
\(=3\left(m^2-\frac{4}{3}m\right)+5=3\left(m^2-2.m.\frac{2}{3}+\frac{4}{9}\right)+5-3.\frac{4}{9}\)
\(=3\left(m-\frac{2}{3}\right)^2+\frac{11}{3}\ge\frac{11}{3}\)
Dấu "=" xảy ra khi m = 2/3.
Vậy GTNN của x2+y2 là 11/3.
c/\(x_1=2x_2\)
\(m-1=x_1+x_2=2x_2+x_2=3x_2\Rightarrow x_2=\frac{m-1}{3}\)
\(\Rightarrow x_1=2x_2=\frac{2}{3}\left(m-1\right)\)
\(x_1.x_2=-m^2+m-2\Rightarrow\frac{1}{3}\left(m-1\right).\frac{2}{3}\left(m-1\right)=-m^2+m-2\)
\(\Leftrightarrow2\left(m-1\right)^2=9\left[-\left(m-\frac{1}{2}\right)^2-\frac{7}{4}\right]\)
Pt trên vô nghiệm do \(VT\ge0>VP\)
Vậy không tồn tại m để......
Lưu ý câu c: ở trên là form làm bài dạng này chung, tuy nhiên, ở bài này ta thấy ngay không tồn tại m.
Do x1 và x2 trái dấu với mọi m
Nên x1 ≠ x2 với mọi m.
Cho phương trình x2 – mx + m2 -5 =0 (1) với m là tham số
1.Tìm m để phương trình có hai nghiệm trái dấu.
2. Với những giá trị của m mà phương trình có nghiệm. Hãy tìm giá trị lớn nhất và nhỏ nhất trong tất cả các nghiệm đó.
+\(\Delta=\left[-\left(m+1\right)\right]^2-4.1.\left(2m-3\right)\)
\(=m^2+2m+1-8m+12=m^2-6m+13=\left(m-3\right)^2+4>0\)
\(\Delta>0\Rightarrow\text{phương trình (1) có 2 nghiệm phân biệt}\)
+x=3
PT(1) trở thành : \(3^2-\left(m+1\right).3+2m-3=0\)
\(\Leftrightarrow-3m-3+2m+6=0\)
\(\Leftrightarrow-m+3=0\Leftrightarrow m=3\text{ Vậy với x=3 thì m=3}\)
a) tự làm nha
b xét tích ac ta có: \(-m^2+m-1=-\left(m^2-m+\frac{1}{4}+\frac{3}{4}\right)=-\left[\left(m-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
ta có: \(\left(m-\frac{1}{2}\right)^2\ge0\Leftrightarrow\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\Rightarrow-\left[\left(m-\frac{1}{2}\right)^2+\frac{3}{4}\right]<0\)với mọi m
=> tích ac <0 <=> pt luôn có 2 nghiệm pb trái dấu với mọi m