Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay m=2 vào ta được phương trình:
x2-3x-2=0 <bấm máy>
* CM: delta=b2-4ac=(2m-1)2-4.1.(-m)= 4m2-4m+1+4m=4m2+1
ta thấy m2 >=0 <=> 4m2>=0 <=> 4m2+1>=1>0 <=> delta>0 Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m.
* >=: lớn hơn hoặc bằng. <đề còn lại ghi k rõ nên mình k giúp được =))>
a: Δ=(2m-2)^2-4*(-2m)
=4m^2-8m+4+8m=4m^2+4>0
=>Phương trình luôn có hai nghiệm phân biệt
b: x1+x2=2m-2; x1x2=-2m
c: x1^2+x2^2=4
=>(x1+x2)^2-2x1x2=4
=>(2m-2)^2-2*(-2m)=4
=>4m^2-8m+4+4m=4
=>4m^2-4m=0
=>m=0 hoặc m=1
\(x^{2^{ }}+2\left(m-1\right)x-6m-7=0\left(1\right)\)
a) \(Dental=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-6m-7\right)\)
\(< =>4\cdot\left(m^2-2m+1\right)+24m+28\)
\(< =>4m^2-8m+4+24m+28\)
\(< =>4m^2+16m+32\)
\(< =>\left(2m+4\right)^2+16>0\) với mọi m
Vậy phương (1) luôn có 2 nghiệm phân biệt với mọi m
b) Theo định lí vi ét ta có:
x1+x2= \(\dfrac{-2\left(m-1\right)}{1}=-2m+1\)
x1x2= \(-6m-7\)
quy đồng
khử mẫu
tách sao cho có tích và tổng
thay x1x2 x1+x2
kết luận
mặt xấu vl . . .
a. + Với m = − 1 2 phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .
+ Vậy khi m = − 1 2 phương trình có hai nghiệm x= 0 và x= 4.
b. + Phương trình có hai nghiệm dương phân biệt khi
Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0
+ Ta có Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R
+ Giải được điều kiện m > − 1 2 (*).
+ Do P>0 nên P đạt nhỏ nhất khi P 2 nhỏ nhất.
+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3 ( ∀ m > − 1 2 ) ⇒ P ≥ 3 ( ∀ m > − 1 2 ) .
và P = 3 khi m= 0 (thoả mãn (*)).
+ Vậy giá trị nhỏ nhất P = 3 khi m= 0.
a: Δ=(2m-1)^2-4*(-1)(m-m^2)
=4m^2-4m+1+4m-4m^2=1>0
=>(1) luôn có hai nghiệm phân biệt
b: m=x1-2x1x2+x2-2x1x2
=x1+x2-4x1x2
=2m-1+4(m-m^2)
=>m-2m+1-4m+4m^2=0
=>4m^2-5m+1=0
=>m=1 hoặc m=1/4
c: x1+x2-2x1x2
=2m-1+2m-2m^2=-2m^2+4m-1
=-2m^2+4m-2+1
=-2(m-1)^2+1<=1
a: Thay m=1 vào pt, ta được:
\(x^2-x=0\)
=>x(x-1)=0
=>x=0 hoặc x=1
b: \(\Delta=\left(2m-1\right)^2-4m\left(m-1\right)\)
\(=4m^2-4m+1-4m^2+4m=1>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt