K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Δ}=\left(2m+1\right)^2-4\cdot1\cdot m=4m^2+4m+1-4m=4m^2+1>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\left(2m+1\right)\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)

\(A=x_1^2+x_2^2-x_1x_2\)

\(=\left(x_1+x_2\right)^2-3x_1x_2\)

\(=\left(2m+1\right)^2-3m=4m^2+4m+1-3m\)

\(=4m^2+m+1\)

\(=\left(2m\right)^2+2\cdot2m\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{15}{16}\)

\(=\left(2m+\dfrac{1}{4}\right)^2+\dfrac{15}{16}>=\dfrac{15}{16}\forall m\)

Dấu '=' xảy ra khi \(2m+\dfrac{1}{4}=0\)

=>\(m=-\dfrac{1}{8}\)