Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Tìm \(\Delta\)để tìm điều kiện cho phương trình có 2 nghiệm
-Tìm tích \(x_1_{ }x_2=\frac{c}{a}\)để tìm đk cho 2 nghiệm khác 0
- Tìm tổng và tích 2 nghiệm theo định lí Vi-ét
- \(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=\frac{-5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{-5}{2}\)
\(\Leftrightarrow\frac{\left(x1+x2\right)^2}{x1x2}=\frac{-1}{2}\)
Thay tích với tổng vào để tính nhé.Mình bận chỉ hướng dẫn ý chính. Có gì sai sót bỏ qua cho
Làm được câu đầu P/s mới lớp 8 thôi
Ta có: \(x^2-4x+m+1=0\)
\(\Rightarrow\Delta'=3-m\)
a) Khi m = 2
\(x^2-4x+3=0\)
\(\Rightarrow\Delta=3-2=1\)
\(\Rightarrow x_1=2+1=3\)
\(\Rightarrow x_2=2-1=1\) Sai bỏ qa nha :"))))
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
a. Thay \(m=-2\) vào pt đề cho ta được pt:
\(x^2-6x-7=0\left(2\right)\)
Lại có: \(a-b+c=1+6-7=0\) nên pt 2 có nghiệm là: \(x_1=1\)và \(x_2=7\)
b. Ta có: \(\Delta'=\left(-3\right)^2-1\left(2m-3\right)=9-2m+3=12-2m\)
Để pt 1 có 2 nghiệm \(x_1;x_2\Leftrightarrow12-2m\ge0\)
\(\Leftrightarrow m\le6\)
Theo hệ thức vi-ét ta được: \(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=2m-3\end{cases}}\left(3\right)\)
Theo đề bài ta có: \(x^2_1x_2+x_1x_2^2=24\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\left(4\right)\)
Thay \(\left(3\right)\)vào \(\left(4\right)\)ta được:
\(6\left(2m-3\right)=24\)
\(\Rightarrow2m-3=4\)
\(\Rightarrow2m=7\)
\(\Rightarrow m=\frac{7}{2}\left(tmđkxđ\right)\)
Vậy .............
b, \(\Delta'=\left(-6\right)^2-1.\left(2m-3\right)=36-2m+3=39-2m\)
Để pt (1) có 2 nghiệm <=> \(\Delta'\ge0\Leftrightarrow39-2m\ge0\Leftrightarrow m\le\frac{39}{2}\)
Theo hệ thức vi-ét ta có: \(x_1+x_2=\frac{-\left(-6\right)}{1}=6;x_1x_2=\frac{2m-3}{1}=2m-3\)
Theo bài ra ta có: \(x_1^2x_2+x_1x_2^2=24\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\)
\(\Leftrightarrow\left(2m-3\right).6=24\Leftrightarrow2m-3=24\)
\(\Leftrightarrow2m=27\Leftrightarrow m=\frac{27}{2}\left(TM\right)\)
\(f\left(x\right)=x^2+\left(2m+1\right)x-m^2-m\)
Thần chú "trong trái - ngoài cùng"
\(1< x_2< x_1< 4\) nên 1 và 4 đều nằm ngoài khoảng 2 nghiệm nên f(1) và f(4) cùng dấu với hệ số a=1 (dương) nên f(1) và f(4) đều dương
Và trung bình cộng của \(x_1\) và \(x_2\) sẽ lớn hơn 1 đồng thời nhỏ hơn 4
Vậy ta sẽ được hệ điều kiện sau:
\(\left\{{}\begin{matrix}\Delta>0\\f\left(1\right)>0\\f\left(4\right)>0\\1< \frac{x_1+x_2}{2}< 4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2m+1\right)^2+4\left(m^2+m\right)>0\\1^2+\left(2m+1\right).1-m^2-m>0\\4^2+\left(2m+1\right).4-m^2-m>0\\1< \frac{-\left(2m+1\right)}{1}< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8m^2+8m+1>0\\-m^2+m+2>0\\-m^2+7m+20>0\\2< -2m< 5\end{matrix}\right.\)
Điều kiện thứ 2 cho ta \(-1< m< 2\), điều kiện thứ 4 cho ta \(-\frac{5}{2}< m< -1\) \(\Rightarrow\) không tồn tại m thỏa mãn