Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(\Delta'=b'^2-ac=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)=m^2-2m+1+m+3\)
\(=m^2-m+4=m^2-m+\frac{1}{4}+\frac{15}{4}=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\)
Vậy pt (1) có 2 nghiệm x1,x2 với mọi m
Theo hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\left(2\right)\\x_1x_2=-m-3\left(3\right)\end{cases}}\)
Ta có: \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)
<=>\(4\left(m-1\right)^2-2\left(-m-3\right)=10\)
<=>\(4m^2-8m+4+2m+6=10\)
<=>\(4m^2-6m+10=10\Leftrightarrow2m\left(2m-3\right)=0\)
<=>\(\orbr{\begin{cases}m=0\\m=\frac{3}{2}\end{cases}}\)
c, Từ (2) => \(m=\frac{x_1+x_2+2}{2}\)
Thay m vào (3) ta có: \(x_1x_2=\frac{-x_1-x_2-2}{2}-3=\frac{-x_1-x_2-8}{2}\)
<=>\(2x_1x_2+x_1+x_2=-8\)
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
\(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+m\left(mx-2\right)=1\\y=mx-2\end{matrix}\right.\\ \Leftrightarrow x\left(m^2+1\right)=2m+1\Leftrightarrow x=\dfrac{2m+1}{m^2+1}\\ \Leftrightarrow y=\dfrac{m\left(2m+1\right)}{m^2+1}-2=\dfrac{2m^2+m-2m^2-2}{m^2+1}=\dfrac{m-2}{m^2+1}\)
Ta có \(x+y=1\Leftrightarrow\dfrac{2m+1+m-2}{m^2+1}=1\)
\(\Leftrightarrow3m-1=m^2+1\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)
Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)
Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.
Câu b mình nhìn không rõ đề, bạn sửa lại nhé.
Đáp án:
a) Thay m=3
x² - 2(3-1)x + 3² -6=0
⇔ x² - 4x + 3=0
⇔ x² -3x -x + 3 = 0
⇔ x(x-3) - (x-3) = 0
⇔(x-3) (x-1) =0
⇒ x-3 = 0 hoặc x-1 =0
⇒ x= 3 hoặc x= 1
b) Ta có Δ'= (m-1)² - m² + 6 = m² -2m + 1 - m² + 6 = -2m + 7
Để pt có 2 nghiệm thì Δ' ≥ 0 hay -2m + 7≥ 0
⇒ m ≤ 3,5
Áp dụng hệ thức vi ét cho pt trên ta có
x1x1 + x2x2 = 2(m-1)
x1x1 x2x2 = m2m2 -6
Ta có x21x12 + x22x22 = 16
⇔ x21x12 + x22x22 + 2x1x1 x2x2 = 16 + 2 x1x1 x2x2
⇔(x1+x2)2x1+x2)2 = 16 + 2 x1x1 x2x2
Thay vào ta đc
4 (m-1)² = 16 + 2 (m² - 6)
⇔4 ( m² - 2m + 1) = 16 + 2m² -12
⇔ 4m² - 8m + 4 = 16 + 2m² -12
⇔ 2m² -8m =0
⇔ m² - 4m = 0
⇔ m( m-4) =0
⇒ m=0 hoặc m-4 = 0
⇒m=0 (TM) hoặc m=4 (KTM)
Vậy m =0
Chắc bạn nhầm đề bài rồi bạn nhé, dù sao mình cũng cảm ơn bạn!
\(f\left(x\right)=x^2+\left(2m+1\right)x-m^2-m\)
Thần chú "trong trái - ngoài cùng"
\(1< x_2< x_1< 4\) nên 1 và 4 đều nằm ngoài khoảng 2 nghiệm nên f(1) và f(4) cùng dấu với hệ số a=1 (dương) nên f(1) và f(4) đều dương
Và trung bình cộng của \(x_1\) và \(x_2\) sẽ lớn hơn 1 đồng thời nhỏ hơn 4
Vậy ta sẽ được hệ điều kiện sau:
\(\left\{{}\begin{matrix}\Delta>0\\f\left(1\right)>0\\f\left(4\right)>0\\1< \frac{x_1+x_2}{2}< 4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2m+1\right)^2+4\left(m^2+m\right)>0\\1^2+\left(2m+1\right).1-m^2-m>0\\4^2+\left(2m+1\right).4-m^2-m>0\\1< \frac{-\left(2m+1\right)}{1}< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8m^2+8m+1>0\\-m^2+m+2>0\\-m^2+7m+20>0\\2< -2m< 5\end{matrix}\right.\)
Điều kiện thứ 2 cho ta \(-1< m< 2\), điều kiện thứ 4 cho ta \(-\frac{5}{2}< m< -1\) \(\Rightarrow\) không tồn tại m thỏa mãn