K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

\(pt\Leftrightarrow sin2x-sinx-m\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left(2cosx-1\right)\left(sinx-m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2cosx-1=0\\sinx-m=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{1}{2}\\sinx=m\end{matrix}\right.\)
\(cosx=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\).
Trong đoạn \(\left[0;\dfrac{3\pi}{4}\right]\) có hai nghiệm là \(\dfrac{\pi}{3},\dfrac{2\pi}{3}\).
Nên để hai phương trình \(sin2x-2mcosx=sinx-m\) có hai nghiệm thuộc đoạn \(\left[0;\dfrac{3\pi}{4}\right]\) thì phương trình \(sinx=m\) phải vô nghiệm trên đoạn \(\left[0;\dfrac{3\pi}{4}\right]\).
Trên đoạn \(\left[0;\dfrac{3\pi}{4}\right]\) hàm số \(y=sinx\) nhận giá trị trong đoạn \(\left[0;1\right]\) nên phương trình \(sinx=m\)vô nghiệm thì \(m\notin\left[0;1\right]\) hay \(\left[{}\begin{matrix}m< 0\\m>1\end{matrix}\right.\).

28 tháng 7 2018

Này bạn, cos x=1/2 thì x=\(\pi\)π/3 +k2π hoặc x= -π/3+k2π

NV
14 tháng 9 2020

1.

\(sin2x=sinx\Leftrightarrow\left[{}\begin{matrix}2x=x+k2\pi\\2x=\pi-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\) \(\Rightarrow x=\left\{0;2\pi;\frac{\pi}{3};\pi;\frac{5\pi}{3}\right\}\Rightarrow\sum x=...\)

2.

Từ đường tròn lượng giác, ta thấy để pt có 2 nghiệm pb thuộc khoảng đã cho \(\Leftrightarrow\frac{\sqrt{3}}{2}\le\frac{m}{2}< 1\Leftrightarrow\sqrt{3}\le m< 2\)

NV
25 tháng 12 2020

\(\Leftrightarrow2\left(cos^2x-sin^2x\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)

\(\Leftrightarrow\left(2cosx-2sinx\right)\left(sinx+cosx\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(\text{vô nghiệm trên đoạn xét}\right)\\2cosx-2sinx+sinx.cosx=m\left(1\right)\end{matrix}\right.\) 

Xét (1), đặt \(t=cosx-sinx=\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}t\in\left[-1;1\right]\\sinx.cosx=\dfrac{1-t^2}{2}\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2t+\dfrac{1-t^2}{2}=m\)

Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+2t+\dfrac{1}{2}\) trên \(\left[-1;1\right]\)

\(-\dfrac{b}{2a}=2\notin\left[-1;1\right]\) ; \(f\left(-1\right)=-2\) ; \(f\left(1\right)=2\)

\(\Rightarrow-2\le f\left(t\right)\le2\Rightarrow-2\le m\le2\)

NV
31 tháng 10 2019

\(\Leftrightarrow m\left(sinx+cosx+1\right)=sin^2x+cos^2x+2sinx.cosx\)

\(\Leftrightarrow m\left(sinx+cosx+1\right)=\left(sinx+cosx\right)^2\)

Đặt \(sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=t\)

\(x\in\left[0;\frac{\pi}{2}\right]\Rightarrow x+\frac{\pi}{4}\in\left[\frac{\pi}{4};\frac{3\pi}{4}\right]\Rightarrow t\in\left[1;\sqrt{2}\right]\)

Phương trình trở thành: \(t^2=m\left(t+1\right)\Leftrightarrow\frac{t^2}{t+1}=m\) (1)

\(f\left(t\right)=\frac{t^2}{t+1}\) đồng biến trên \(\left[1;\sqrt{2}\right]\Rightarrow f\left(1\right)\le f\left(t\right)\le f\left(\sqrt{2}\right)\)

\(\Leftrightarrow\frac{1}{2}\le f\left(t\right)\le2\sqrt{2}-2\)

\(\Rightarrow\frac{1}{2}\le m\le2\sqrt{2}-2\)

31 tháng 10 2019

Ơ sao ra được căn 2 vậy

1, phương trình 2sin^2x-5sinxcosx-cos^2x=-2 tương đương vs pt nào sau đây A. 3cos2x-5sin2x=5 B.3cos2x+5sin2x=-5 C. 3cos2x-5sin2x=-5 D. 3cos2x+5sin2x=5 2, Phương trình 2m cos(\(\frac{9\pi}{2}\)-x)+(3m-2)sin(5\(\pi\)-x)+4m-3=0 có đúng 1 nghiệm x\(\in\)[-\(\pi\)/6;5pi/6] 3, Để phương trình 2\(\sqrt{3}\) cos^2x+6sinxcosx=m+\(\sqrt{3}\) có 2 nghiệm trong khỏng (0;pi)thì giá trị của m là 4, Tìm tất cả giá trị của...
Đọc tiếp

1, phương trình 2sin^2x-5sinxcosx-cos^2x=-2 tương đương vs pt nào sau đây

A. 3cos2x-5sin2x=5 B.3cos2x+5sin2x=-5 C. 3cos2x-5sin2x=-5 D. 3cos2x+5sin2x=5

2, Phương trình 2m cos(\(\frac{9\pi}{2}\)-x)+(3m-2)sin(5\(\pi\)-x)+4m-3=0 có đúng 1 nghiệm x\(\in\)[-\(\pi\)/6;5pi/6]

3, Để phương trình 2\(\sqrt{3}\) cos^2x+6sinxcosx=m+\(\sqrt{3}\) có 2 nghiệm trong khỏng (0;pi)thì giá trị của m là

4, Tìm tất cả giá trị của tham số m để phương trình sin^2x+2(m+1)sinx-3m(m-2)=0 có nghiệm

5, Số nghiệm thuộc (0;pi) của phương trình sinx+\(\sqrt{1+cos^2x}\)=2(cos\(^2\)3x+1) là

6, Tìm m để phương trình (cosx+1)(cos2x-mcosx)=msin^2x có đúng 2 nghiệm x\(\in\)[0;2pi/3]

7, gpt \(\sqrt{3}\) tan^2x-2tanx-căn3=0

8, Tìm giá trị m để phương trình 5sinx-m=tan^2x(sinx-1)có đúng 3 nghiệm thuộc (-pi;pi/2)

9, Có bao nhiêu giá trị nguyên của m để pt cos2x+sinx+m=0 có nghiệm x\(\in\) [-pi/6;pi/4]

10, tìm GTNN và GTLN của

a, y=4\(\sqrt{sinx+3}\) -1 b, y=\(\frac{12}{7-4sinx}\) trên đoạn[-pi/6;5pi/6] c, y=2cos^2x-sin2x+5

d, y=sinx+cos2x trên đoạn [0;pi]

11, Tìm số nghiệm của phương trình sin(cosx)=0 trên đoạn x[o;2pi]

12, Tính tổng các nghiệm của phương trình cos\(^2\) x-sin2x=\(\sqrt{2}\) +cos\(^2\) (\(\frac{\pi}{2}\) +x) trên khoảng(0;2pi)

13, nghiệm của pt \(\frac{sin2x+2cosx-sinx-1}{tanx+\sqrt{3}}\)=0 được biểu diễn bởi mấy điểm trên đường tròn lượng giác

14, giải pt cotx-tanx=\(\frac{2cos4x}{sin2x}\)

15, tìm m để pt (sinx-1)(cos^2x -cosx+m)=0 có đúng 5 nghiệm thuộc đoạn [0;2pi]

0
17 tháng 8 2019

1/ ĐKXĐ: \(\cos2x\ne0\)

\(\frac{\cos4x}{\cos2x}=\frac{\sin2x}{\cos2x}\)\(\Leftrightarrow\cos4x-\sin2x=0\)

\(\Leftrightarrow2\cos^22x-1-\sin2x=0\)

\(\Leftrightarrow2-2\sin^22x-1-\sin2x=0\)

\(\Leftrightarrow2\sin^22x+\sin2x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\frac{1}{2}=\sin\frac{\pi}{6}\\\sin2x=-1=\sin\frac{-\pi}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{6}+2k\pi\\2x=\frac{5\pi}{6}+2k\pi\\2x=\frac{-\pi}{2}+2k\pi\left(l\right)\\2x=\frac{3\pi}{2}+2k\pi\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

17 tháng 8 2019

2/ \(\sin2.4x+\cos4x=1+2\sin2x.\cos\left(2x+4x\right)\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+2\sin2x.\left(\cos2x.\cos4x-\sin2x.\sin4x\right)\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+2\sin2x.\cos2x.\cos4x-2\sin^22x.\sin4x\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+\sin4x.\cos4x-\sin4x+\cos4x.\sin4x\)

Đến đây bn tự giải nốt nhé, lm kiểu bthg thôi bởi vì đã quy về hết sin4x và cos4x r

loading...  loading...