K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có a=2 ;b=m-1; c=-2

\(\Rightarrow\Delta=\left(m-1\right)^2+4.2.2>0\)

 Vậy pt có 2 nghiệm \(x_1,x_2\)phân biệt \(x_1=\frac{1-m+\sqrt{\left(m-1\right)^2+16}}{4},x_2=\frac{1-m-\sqrt{\left(m-1\right)^2+16}}{4}\)

Học tốt.

         

20 tháng 4 2020

Ta xét \(\Delta=\left(m-1\right)^2-4\left(-2\right)\cdot2=\left(m-1\right)^2+16>0\)

Do \(\Delta>0\) nên phương trình luôn có nghiệm x1 và x2 phân biệt

Vậy ta có đpcm

30 tháng 4 2020

\(\Delta=\left(m-1\right)^2-4.2.\left(-2\right)=\left(m-1\right)^2+16>0\)

nên PT luôn có 2 nghiệm phân biệt 

30 tháng 4 2020

Mình ms học lp 6 nên sai thông cảm

Xác định : a = 2 ; b = m-1 ; c = -2

Ta có : \(\Delta=b^2-4ac=\left(m-1\right)^2-4.2.\left(-2\right)\)

\(=\left(m-1\right)^2+16\)

Vì \(\hept{\begin{cases}\left(m-1\right)^2\ge0\\16>0\end{cases}=>\left(m-1\right)^2}+16>0\)

Nên pt có 2 nghiệm phân biệt 

NV
21 tháng 3 2022

a. Với \(m=-5\) pt trở thành:

\(x^2+8x-9=0\)

\(a+b+c=1+8-9=0\) nên pt có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=-9\end{matrix}\right.\)

b. Ta có:

\(\Delta'=\left(m+1\right)^2-\left(m-4\right)=m^2+m+5=\left(m+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0;\forall m\)

\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm pb với mọi m

17 tháng 6 2022

ko biết làm

AH
Akai Haruma
Giáo viên
5 tháng 3 2021

Lời giải:

Xin chỉnh sửa lại chút, tìm $k$, chứ không phải tìm $m$.

PT $\Leftrightarrow x^2-(6k-2)=0\Leftrightarrow x^2=6k-2$

Để pt có 2 nghiệm phân biệt thì $6k-2>0\Leftrightarrow k>\frac{1}{3}$

Khi đó:

$x_1=\sqrt{6k-2}$ và $x_2=-\sqrt{6k-2}$

Để $3x_1-x_2=2$

$\Leftrightarrow 3\sqrt{6k-2}+\sqrt{6k-2}=2$

$\Leftrightarrow \sqrt{6k-2}=\frac{1}{2}\Rightarrow k=\frac{3}{8}$

5 tháng 3 2021

Câu này có cần tính viets ko ạ

 

28 tháng 2 2021

PT có 2 nghiệm pb

`<=>Delta'>0`

`<=>(m+1)^2-2m>0`

`<=>m^2+2m+1-2m>0`

`<=>m^2+1>0` luôn đúng.

`a,\sqrt{\Delta}=\sqrt{m^2+1}`

`=>x_1=(2m+2+\sqrt{m^2+1})/(2m)`

`=>-3x_1=(-6m-6-3\sqrt{m^2+1})/(2m)`

`=>x_1=(2m+2-\sqrt{m^2+1})/(2m)`

`=>-2x_1=(\sqrt{m^2+1}-m-1)/m`

b,Áp dụng vi-ét

`=>x_1+x_2=(2m+2)/m,x_1.x_2=2/m`

PT có các nghiệm thì bạn phải ghi rõ đề chứ?

28 tháng 2 2021

PT có 2 nghiệm pb

`<=>Delta>0`

`<=>4(m+1)^2-8m>0`

`<=>4m^2+8m+4-8m>0`

`<=>4m^2+4>0` luôn đúng.

`a,\sqrt{\Delta}=2\sqrt{m^2+1}`

`=>x_1=(2m+2+2\sqrt{m^2+1})/(2m)=(m+1+\sqrt{m^2+1})/,`

`=>-3x_1=(-3m-3-3\sqrt{m^2+1})/(m)`

`=>x_2=(2m+2-2\sqrt{m^2+1})/(2m)=(m+1-\sqrt{m^2+1})/m`

`=>-2x_2=(2\sqrt{m^2+1}-2m-2)/m`

b,Áp dụng vi-ét

`=>x_1+x_2=(2m+2)/m,x_1.x_2=2/m`

PT có các nghiệm thì bạn phải ghi rõ đề chứ?

a: Δ=(2m+2)^2-4(m-2)

=4m^2+8m+4-4m+8

=4m^2+4m+12

=(2m+1)^2+11>=11>0

=>Phương trình luôn cóhai nghiệm phân biệt

b: x1^2+2(m+1)x2-5m+2

=x1^2+x2(x1+x2)-4m-m+2

=x1^2+x1x2+x2^2-5m+2

=(x1+x2)^2-2x1x2+x1x2-5m+2

=(2m+2)^2-(m-2)-5m+2

=4m^2+8m+4-m+2-5m+2

=4m^2+2m+8

=4(m^2+1/2m+2)

=4(m^2+2*m*1/4+1/16+31/16)

=4(m+1/4)^2+31/4>=31/4

Dấu = xảy ra khi m=-1/4