K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

xét m=0 thay vào ptr đã cho được x=-1 (loại)

xét m khác 0

ptr đã cho là ptr bậc 2 có 2 nghiệm phân biệt khi ∆ >0

<=>  (m2+m+1)2-4m(m+1) >0

<=> (m2+m)2+2(m2+m) +1 -4(m2+m)>0

<=> (m2+m)2-2(m2+m)+1>0

<=> (m2+m-1)2>0

<=> m2+m-1 khác 0

<=> m khác \(\frac{-1\pm\sqrt{5}}{2}\)

Gọi x1, x2 là hai nghiệm phân biệt của ptr 

=> \(\hept{\begin{cases}x1+x2=\frac{m^2+m+1}{m}\\x1.x2=\frac{m+1}{m}\end{cases}}\)(1)

Vì ptr đã cho có hai nghiệm khác -1 nên 

{x1 # -1 và x2 #-1

=> (x1+1)(x2+1) # 0 và (x1+1) + (x2+1) # 0

=> x1.x2 +x1+x2+1 khác 0 và x1 +x2 +2 khác 0

thay (1) vào 

NV
5 tháng 3 2022

Với \(m=0\) không thỏa mãn

Với \(m\ne0\) pt có 2 nghiệm pb khác -1 khi:

\(\left\{{}\begin{matrix}\Delta=\left(m^2+m+1\right)^2-4m\left(m+1\right)>0\\m+\left(m^2+m+1\right)+m+1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+m\right)^2-2\left(m^2+m\right)+1>0\\m^2+3m+2\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+m-1\right)^2>0\\m^2+3m+2\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m-1\ne0\\m^2+3m+2\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne\dfrac{-1\pm\sqrt{5}}{2}\\m\ne-2\\m\ne-1;m\ne0\end{matrix}\right.\)