K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

Chọn đáp án D.

24 tháng 1 2019

Đáp án C.

Đặt t = sin x , t ∈ − 1 ; 1 . Phương trình đã cho trở thành  2 t + 1 t + 2 = m    (*).

Để phương trình đã cho có đúng hai nghiệm thuộc đoạn 0 ; π  thì phương trình (*) phải có đúng một nghiệm thuộc nửa khoảng 0 ; 1 .

Xét hàm số f t = 2 t + 1 t + 2 . Ta có  f ' t = 3 t + 2 2   .

Bảng biến thiên của :

 

Vậy để phương trình (*) có đúng một nghiệm thuộc nửa khoảng 0 ; 1  thì m ∈ 1 2 ; 1 . Vậy C là đáp án đúng

 

28 tháng 4 2019

Đáp án C

8 tháng 4 2018

5 tháng 6 2019

16 tháng 8 2017

Đáp án là B

9 tháng 4 2017

9 tháng 6 2017

Do đó phương trình f[f(sinx)] = m có nghiệm thuộc khoảng  0 ; π khi và chỉ khi phương trình

f(t) = m có nghiệm thuộc nửa khoảng [-1;1]

Dựa vào đồ thị, suy ra 

Chọn C.

3 tháng 8 2018

Đáp án C

Phương trình 

⇔ m x 2 + 2 x 3 − 2 x 2 + 2 x + 2 = 0 → t = x 2 + 2 x m t 3 − 2 t + 2 = 0      1

Ta có  f x = x 2 + 2 x , x ≤ − 3 ⇒ f x ≥ 3 ⇒ t ∈ 3 ; + ∞

Khi đó 1 ⇔ m = 2 t 2 − 2 t 3 = f t  với  t ∈ 3 ; + ∞

Có f ' t = − 4 t 3 + 6 t 4 ⇒ f t  nghịch biến trên  3 ; + ∞ ⇒ max 3 ; + ∞ f x ≤ f 3 = 4 27

Suy ra m ≤ max 3 ; + ∞ f x = 4 27 ⇒  có vô số nghiệm giá trị của m