K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

Phương trình (m – 3)x2 – 2mx + m − 6 = 0

có a = m – 3; b’ = −m; c = m – 6

Suy ra Δ ' = (−m)2 – (m − 3)(m – 6) = 9m – 18

TH1: m – 3 = 0 ⇔ m = 3  −6x – 3 = 0

⇔ x = − 1 2

TH2: m – 3 ≠ 0m

Để phương trình vô nghiệm thì:

a ≠ 0 Δ ' < 0 ⇔ m ≠ 3 9 m − 18 < 0 ⇔ m ≠ 3 m < 2 ⇔ m < 2

Vậy m < 2 là giá trị cần tìm

Đáp án cần chọn là: B

NV
25 tháng 6 2020

Đặt \(f\left(x\right)=x^2-\left(2m+1\right)x+m^2+m\)

Để pt có 2 nghiệm thỏa mãn \(-2< x_1< x_2< 4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(2m+1\right)^2-4\left(m^2+m\right)>0\\f\left(-2\right)=4+2\left(2m+1\right)+m^2+m>0\\f\left(4\right)=16-4\left(2m+1\right)+m^2+m>0\\-2< \frac{x_1+x_2}{2}< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1>0\\m^2+5m+6>0\\m^2-7m+12>0\\-4< 2m+1< 8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-2\\m< -3\end{matrix}\right.\\\left[{}\begin{matrix}m>4\\m< 3\end{matrix}\right.\\-\frac{5}{2}< m< \frac{7}{2}\end{matrix}\right.\)

\(\Rightarrow-2< m< 3\)

3 tháng 12 2018

a, ĐK để pt có nghiệm \(\Delta'\ge0\Leftrightarrow9\left(m-2\right)^2-m\left(4m-7\right)\ge0\) 

                                                 \(\Leftrightarrow9\left(m^2-4m+4\right)-4m^2+7m\ge0\)

                                                \(\Leftrightarrow9m^2-36m+36-4m^2+7m\ge0\) 

                                                \(\Leftrightarrow5m^2-29m+36\ge0\)

                                                 \(\Leftrightarrow\orbr{\begin{cases}x\le\frac{9}{5}\\x\ge4\end{cases}}\)

Vì pt có một nghiệm x1 = 2 nên

\(m.2^2+6\left(m-2\right).2+4m-7=0\)

\(\Leftrightarrow4m^2+12m-24+4m-7=0\)

\(\Leftrightarrow4m^2+16m-31=0\)(*)

Xét \(\Delta'_m=64+4.31=188>0\)

=> pt (*) có 2 nghiệm phân biệt 

         \(m_1=\frac{-16-\sqrt{188}}{8}\)

       \(m_2=\frac{-16+\sqrt{188}}{8}\)

Bài này nghiệm xấu quá nên mk ko làm tiếp nữa :( Nếu cố tình làm tiếp thì bạn hãy xét 2 trường hợp của m rồi thay vào pt bạn đầu . Sau đó xét delta rồi dùng công thức nghiệm sẽ tìm đc x

b, Theo Vi-et \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=\frac{6\left(2-m\right)}{m}=\frac{12-6m}{m}\\x_1.x_2=\frac{c}{a}=\frac{4m-7}{m}\end{cases}}\)

Do -2 < x1 < x2 < 4

Nên \(\hept{\begin{cases}x_1+2>0\\x_2-4< 0\end{cases}\Rightarrow\left(x_1+2\right)\left(x_2-4\right)< 0}\)

                                  \(\Leftrightarrow x_1x_2-4x_1+2x_2-8< 0\)

     Đến đây thì dễ rồi ! Bạn cố thay thế các kiểu để bpt này chỉ còn ẩn m rồi quy đồng lên giải . Nhớ kết hợp đk của m ở câu a nx . Muộn r ngủ đây pp

20 tháng 3 2018

Làm được câu đầu P/s mới lớp 8 thôi 

Ta có: \(x^2-4x+m+1=0\)

\(\Rightarrow\Delta'=3-m\)

a) Khi m = 2 

\(x^2-4x+3=0\)

\(\Rightarrow\Delta=3-2=1\)

\(\Rightarrow x_1=2+1=3\)

\(\Rightarrow x_2=2-1=1\) Sai bỏ qa nha :"))))

20 tháng 3 2018

hahah oki bn :>

NV
25 tháng 6 2020

Đặt \(f\left(x\right)=x^2-\left(2m-3\right)x+m^2-3m\)

Để thỏa mãn yêu cầu đề bài:

\(\left\{{}\begin{matrix}\Delta=\left(2m-3\right)^2-4\left(m^2-3m\right)>0\\f\left(1\right)=1-\left(2m-3\right)+m^2-3m>0\\f\left(6\right)=36-6\left(2m-3\right)+m^2-3m>0\\1< \frac{x_1+x_2}{2}< 6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9>0\\m^2-5m+4>0\\m^2-15m+54>0\\2< 2m-3< 12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>4\\m< 1\end{matrix}\right.\\\left[{}\begin{matrix}m>9\\m< 6\end{matrix}\right.\\\frac{5}{2}< m< \frac{15}{2}\end{matrix}\right.\)

\(\Rightarrow4< m< 6\)

16 tháng 2 2019

từ gt => (x1-1)(x2-1) >0
và pt có 2 nghiệm phân biệt

16 tháng 2 2019

Vì 1 < x1 < x2 nên pt đã cho có 2 nghiệm dương phân biệt

Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(2m-3\right)^2-4m^2+12m>0\\2m-3>0\\m^2-3m>0\end{cases}}\)

                              \(\Leftrightarrow\hept{\begin{cases}4m^2-12m+9-4m^2+12m>0\\m>\frac{3}{2}\\x< 0\left(h\right)x>3\end{cases}}\)

                              \(\Leftrightarrow\hept{\begin{cases}9>0\left(LuonĐúng\right)\\x>3\end{cases}}\)

                             \(\Leftrightarrow x>3\)

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m-3\\x_1x_2=m^2-3m\end{cases}}\)

  

Vì \(1< x_1< x_2\Rightarrow\hept{\begin{cases}x_1-1>0\\x_2-1>0\end{cases}}\)             

                        \(\Rightarrow\left(x_1-1\right)\left(x_2-1\right)>0\)

                        \(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1>0\)

                         \(\Leftrightarrow m^2-3m-2m+3+1>0\)

                       \(\Leftrightarrow m^2-5m+4>0\)

                        \(\Leftrightarrow\orbr{\begin{cases}m< 1\\m>4\end{cases}}\)

Mà m > 3 nên m > 4

Vậy m > 4

AH
Akai Haruma
Giáo viên
9 tháng 7 2020

Lời giải:

Trước tiên để pt có 2 nghiệm phân biệt $x_1,x_2$ thì:

$\Delta'=(m-1)^2+m+1>0$

$\Leftrightarrow m^2-m+2>0\Leftrightarrow m\in\mathbb{R}$

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=-(m+1)\end{matrix}\right.\)

Để $x_1< 3< x_2$

$\Leftrightarrow (x_1-3)(x_2-3)< 0$

$\Leftrightarrow x_1x_2-3(x_1+x_2)+9<0$

$\Leftrightarrow -(m+1)-6(m-1)+9< 0$

$\Leftrightarrow -7m+14< 0$

$\Leftrightarrow m>2$

Xem xét các đáp án của đề ta thấy đáp án B là đáp án đúng nhất.

26 tháng 2 2019

m<9 ạ em nhầm!

27 tháng 2 2019

Mình nghĩ với pt tổng quát: \(ax^2+bx+c=0\) có \(\Delta=b^2-4ac\)

Nếu như vậy thì: \(1.x^2+6x+m\) có \(\Delta=6^2-4m\)chứ?

Riêng mình thì bài này mình dùng delta phẩy cho lẹ:

                                       Lời giải

Để pt \(x^2+6x+m=0\) có 2 nghiệm phân biệt thì:

\(\Delta'=\left(\frac{b}{2}\right)^2-ac=3^2-m>0\)

\(\Leftrightarrow m< 9\)