Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=4cm\)
\(cos\alpha_1=\dfrac{-2\sqrt{2}}{4}=-\dfrac{\sqrt{2}}{2}\Rightarrow\alpha_1=\dfrac{3\pi}{4}rad\)
\(cos\alpha_2=\dfrac{2\sqrt{3}}{4}=\dfrac{\sqrt{3}}{2}\Rightarrow\alpha_2=\dfrac{\pi}{6}rad\)
\(\Delta\varphi=\left(\dfrac{\pi}{2}-\dfrac{3\pi}{4}\right)+\left(\dfrac{\pi}{2}-\dfrac{\pi}{6}\right)=\dfrac{\pi}{12}rad\)
Có : \(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{\pi}=2s\)
\(\Delta t=\dfrac{\Delta\varphi}{2\pi}.T=\dfrac{\dfrac{\pi}{12}}{2\pi}.2=\dfrac{1}{12}s\)
Vậy ...
Hình ảnh biểu diễn :
Để tính quãng đường đi được, ta sử dụng công thức sau:
Quãng đường đi được = |x(t2) - x(t1)|
Với t2 = 13/6 s và t1 = 0, ta có:
x(t2) = 10cos(2π(13/6) - π/3) cm x(t1) = 10cos(2π(0) - π/3) cm
Thay vào công thức, ta tính được quãng đường đi được.
Với phương trình x = 20cos(10πt + π/6) cm, ta cần tính thời điểm vật đi qua vị trí M có li độ 10 cm lần thứ 2023.Để tính thời điểm vật đi qua vị trí M, ta sử dụng công thức sau:
t = (1/10π)arccos((x - 10)/20) - π/6
Thay vào công thức, ta tính được thời điểm vật đi qua vị trí M lần thứ 2023.
Vậy, ta đã giải được bài toán.
\(T=\dfrac{2\pi}{w}=\dfrac{2\pi}{\pi}=2\left(s\right)\)
Trong 1 nửa chu kì, vật di chuyển được quãng đường là \(2\cdot10=20\left(cm\right)\)
Vật khi đó phải đi từ vị trí có pha bằng \(-\dfrac{\pi}{3}\) đến vị trí có pha bằng \(\dfrac{\pi}{3}\), vì vật sẽ di chuyển được quãng đường \(\dfrac{A}{2}+\dfrac{A}{2}=A=10\left(cm\right)\)
Vậy thời gian vật phải đi là: \(\dfrac{T}{2}+\dfrac{T}{6}=\dfrac{2}{2}+\dfrac{2}{6}=\dfrac{4}{3}\left(s\right)\)
Ta có: \(x=10cos\left(5\pi\cdot\dfrac{1}{15}+\dfrac{\pi}{3}\right)=-5\\ v=x'=-50\pi sin\left(5\pi\cdot\dfrac{1}{15}+\dfrac{\pi}{3}\right)=-25\pi\sqrt{3}\)
Ta có: \(u=Acos\left(\dfrac{2\pi}{T}t+\dfrac{2\pi x}{\lambda}\right)\)
a, Có: \(\dfrac{2\pi}{T}=2\pi\Rightarrow T=1s\Rightarrow f=\dfrac{1}{T}=1\left(Hz\right)\)
Biên độ A = 10cm
b, Bước sóng: \(\dfrac{2\pi}{\lambda}=0,01\pi\Rightarrow\lambda=200cm\)
Tốc độ truyền sóng: \(v=\lambda f=200\cdot1=200\left(cm/s\right)\)
c, Ta có: \(u=10cos\left(2\pi\cdot4+0,01\pi\cdot50\right)=8,933cm\)
Chu kì dao động: \(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{\dfrac{12}{5}\pi}=\dfrac{5}{6}s\)
Có \(t=6,5s=7T+\dfrac{4}{5}T=7T+\Delta t\)
Mà \(\dfrac{4}{5}T=\dfrac{2}{3}T+\dfrac{2}{15}T\)
Như vậy quãng đường vật đi là:
\(S=7\cdot4A+2A+\dfrac{A}{2}+A.cos48^o\approx311,7cm\)
em xem lại đề bài nha, chị thấy đề bài cho không cụ thể