K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: TH1: m=-3

Pt sẽ là \(-3x+\left(-3+2\right)\left(-3+4\right)=0\)

=>-3x-1=0

hay x=-1/3(loại)

TH2: m<>-3

Để pt có hai nghiệm trái dấu thì (m+2)(m+4)(m+3)<0

=>m<-4 hoặc -3<m<-2

b: \(\text{Δ}=9\left(m+2\right)^2-4\left(m+3\right)\left(m+2\right)\left(m+4\right)\)

\(=\left(m+2\right)\left[9m+18-4\left(m^2+7m+12\right)\right]\)

\(=\left(m+2\right)\left(9m+18-4m^2-28m-48\right)\)

\(=\left(m+2\right)\left(-4m^2-19m-30\right)\)

Để phương trình có hai nghiệm thì Δ>=0

\(\Leftrightarrow\left(m+2\right)\left(4m^2+19m+30\right)< =0\)

=>m+2<=0

hay m<=-2

7 tháng 11 2019

ĐKXĐ:...

\(\sqrt{2x^2+\left(m-4\right)x+3}=x-2\)

\(\Leftrightarrow2x^2+mx-4x+3-x^2+4x-4=0\)

\(\Leftrightarrow x^2+mx-1=0\)

\(\Leftrightarrow.....\)

24 tháng 4 2021

a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)

                    \(=9-m\)

Để phương trình có 2 nghiệm phân biệt thì:

\(\Delta>0\)

\(\Rightarrow 9-m>0\)

\(\Leftrightarrow m<9\)

Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt

b)Theo định lí Vi-ét ta có:

\(x_1.x_2=\frac{-m}{1}=-m(1)\)

\(x_1+x_2=\frac{-6}{1}=-6\)

Lại có \(x_1=2x_2\)

\(\Rightarrow3x_2=-6\)

\(\Leftrightarrow x_2=-2\)

\(\Rightarrow x_1=-4\)

Thay x1;x2 vào (1) ta được 

\(8=m\)

Vậy m-8 thì x1=2x2

 

 

24 tháng 4 2021

Ở trên có đoạn mình đánh lộn  \(\Delta'\) ra \(\Delta\) nhé

22 tháng 12 2016

Giao luu

29 tháng 1 2019

giúp vs ạ

29 tháng 1 2019

a, Vì pt trên nhận \(4+\sqrt{2019}\) là nghiệm nên

\(\left(4+\sqrt{2019}\right)^2-\left(2m+2\right)\left(4+\sqrt{2019}\right)+m^2+2m=0\)

\(\Leftrightarrow2035+8\sqrt{2019}-2m\left(4+\sqrt{2019}\right)-8-2\sqrt{2019}+m^2+2m=0\)

\(\Leftrightarrow m^2-2m\left(3+\sqrt{2019}\right)+6\sqrt{2019}+2027=0\)

Có \(\Delta'=\left(3+\sqrt{2019}\right)^2-6\sqrt{2019}-2027=1>0\)

Nên pt có 2 nghiệm \(m=\frac{3+\sqrt{2019}-1}{1}=2+\sqrt{2019}\)

                   hoặc \(m=\frac{3+\sqrt{2019}+1}{1}=4+\sqrt{2019}\)

b, Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=2m+2\left(1\right)\\x_1x_2=m^2+2m\left(2\right)\end{cases}}\)

Theo đề \(x_1-x_2=m^2+2\left(3\right)\)

Lấy (1) + (3) theo từng vế được 

\(2x_1=m^2+2m+5\)

\(\Rightarrow x_1=\frac{m^2+2m+5}{2}\)

\(\Rightarrow x_2=2m+2-x_1=...=-\frac{\left(m-1\right)^2}{2}\)

Thay vào (2) được \(\frac{m^2+2m+5}{2}.\frac{-\left(m-1\right)^2}{2}=m^2+2m\)

                \(\Leftrightarrow-\left(m^2+2m+5\right)\left(m-1\right)^2=4m^2+8m\)

hmmm