K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 3 2021

Giả sử hình thoi là ABCD với \(A\left(0;1\right)\)

Do tọa độ A thỏa \(x+7y-7=0\) nên đó là cạnh chứa A, ko mất tính tổng quát, giả sử đó là cạnh AB

Tọa độ A ko thỏa pt đường chéo nên đó là đường chéo BD

\(\Rightarrow\) Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+7y-7=0\\x+2y-7=0\end{matrix}\right.\) \(\Rightarrow B\left(7;0\right)\)

Phương trình AC qua A vuông góc BD: \(2\left(x-0\right)-1\left(y-1\right)=0\Leftrightarrow2x-y+1=0\)

Tọa độ tâm I là nghiệm: \(\left\{{}\begin{matrix}x+2y-7=0\\2x-y+1=0\end{matrix}\right.\)  \(\Rightarrow I\left(1;3\right)\)

I là trung điểm AC \(\Rightarrow C\left(2;5\right)\)

I là trung điểm BD \(\Rightarrow D\left(-5;-3\right)\)

Biết tọa độ các đỉnh, bạn tự viết pt các cạnh nhé

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Từ giả thiết suy ra điểm A không nằm trên 2 cạnh có phương trình đã cho. Bởi vậy, đó là phương trình của 2 đường thẳng chứa cạnh BC, CD, chẳng hạn \(BC:2x-3y+5\)

                                                                                          \(CD:3x+2y-7=0\)

Khi đó, đường thẳng chứa cạnh AB đi qua \(A\left(2;-3\right)\) và song song với đường thẳng CD, nên có phương trình :

                       \(3\left(x-2\right)+2\left(y+3\right)=0\)

            hay : \(3x+2y=0\) ẳng chứa cạnh AD là :

                             \(2x-3y-11=0\)

NV
28 tháng 1 2022

B là giao điểm của BD và AB nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x+2y-7=0\\x+7y-7=0\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}x=7\\y=0\end{matrix}\right.\) \(\Rightarrow B\left(7;0\right)\)

Đường chéo AC qua A và vuông góc BD nên nhận (2;-1) là 1 vtpt

Phương trình AC:

\(2\left(x-0\right)-1\left(y-1\right)=0\Leftrightarrow2x-y+1=0\)

Gọi I là giao điểm AC và BD \(\Rightarrow\) I là tâm hình thoi, tọa độ I thỏa mãn:

\(\left\{{}\begin{matrix}2x-y+1=0\\x+2y-7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\) \(\Rightarrow I\left(1;3\right)\)

I là trung điểm AC nên tọa độ C thỏa mãn:

\(\left\{{}\begin{matrix}x_C=2x_I-x_A=2\\y_C=2y_I-y_A=5\end{matrix}\right.\) \(\Rightarrow C\left(2;5\right)\)

I là trung điểm BD nên tọa độ D thỏa mãn:

\(\left\{{}\begin{matrix}x_D=2x_I-x_B=-5\\y_D=2y_I-y_B=6\end{matrix}\right.\) \(\Rightarrow D\left(-5;6\right)\)

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:

$BD: x+2y-7=0; AD: x+3y-3=0$ nên $D$ chính là giao điểm của 2 PTĐT này.

\(\Rightarrow \left\{\begin{matrix} x_D+2y_D-7=0\\ x_D+3y_D-3=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_D=15\\ y_D=-4\end{matrix}\right.\)

Vì $ABCD$ là hình thoi nên $AC\perp BD$.

$\Rightarrow \overrightarrow{AC}=\overrightarrow{n_{BD}}=(1,2)$

$\Rightarrow \overrightarrow{n_{AC}}=(-2,1)$

PTĐT $AC$ là:

$-2(x-0)+1(y-1)=0\Leftrightarrow -2x+y-1=0\Leftrightarrow 2x-y+1=0$

Gọi $O$ là giao 2 đường chèo $AC, BD$. 

\(\Rightarrow \left\{\begin{matrix} 2x_O-y_O+1=0\\ x_O+2y_O-7=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_O=1\\ y_O=3\end{matrix}\right.\)

$O$ là trung điểm $BD$ nên: $x_B=2x_O-x_D=2-15=-13$

$y_B=2y_O-y_D=6+4=10$

Vì $\overrightarrow{BC}=\overrightarrow{AD}$ nên PTĐT $BC$ có dạng:

$(x+13)+3(y-10)-3=0$

$\Leftrightarrow x+3y-30=0$

$O$ là trung điểm của $AC$ nên:

$x_C=2x_O-x_A=2-0=2$

$y_C=2y_C-y_A=6-1=5$

$\Rightarrow \overrightarrow{CD}=(13, -9)$

$\Rightarrow \overrightarrow{n_{CD}}=(9,13)$

PTĐT $CD$ là: $9(x-2)+13(y-5)=0\Leftrightarrow 9x+13y-83=0$

PTĐT $AB$ là: $9(x-0)+13(y-1)=0\Leftrightarrow 9x+13y-13=0$

 

 

17 tháng 11 2019

Trực tâm H là giao điểm của BH và AH ⇒ tọa độ H là nghiệm của hệ:

Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10

A là giao điểm của AB và AH nên tọa độ A là nghiệm của hệ phương trình:

Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10

B là giao điểm BH và AB nên tọa độ điểm B là nghiệm của hệ:

Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10

+ AC ⊥ HB, mà HB có một vtpt là (5; -4)⇒ AC nhận (4; 5) là một vtpt

AC đi qua Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10

⇒ Phương trình đường thẳng AC: Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10 hay 4x + 5y – 20 = 0.

+ CH ⊥ AB, AB có một vtpt là (4; 1) ⇒ CH nhận (1; -4) là một vtpt

CH đi qua Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10

⇒ Phương trình đường thẳng CH: Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10 hay CH: 3x – 12y - 1 = 0.

+ BC ⊥ AH , mà AH nhận (2; 2) là một vtpt

⇒ BC nhận (1; -1) là một vtpt

BC đi qua B(3; 0)

⇒ Phương trình đường thẳng BC: 1(x - 3) – 1(y – 0) = 0 hay x – y – 3 = 0.

20 tháng 3 2018

Giải bài 1 trang 93 sgk Hình học 10 | Để học tốt Toán 10

CD: x + 2y – 12 = 0 ⇒ CD nhận Giải bài 1 trang 93 sgk Hình học 10 | Để học tốt Toán 10 là một vtpt

⇒ CD nhận Giải bài 1 trang 93 sgk Hình học 10 | Để học tốt Toán 10 là một vtcp.

+ ABCD là hcn ⇒ AD ⊥ CD ⇒ AD nhận Giải bài 1 trang 93 sgk Hình học 10 | Để học tốt Toán 10 là một vtpt

A(5 ; 1) ∈ AD

⇒ Phương trình đường thẳng AD: 2( x- 5) – 1(y – 1) = 0 hay 2x – y – 9 = 0.

+ ABCD là hcn ⇒ AB // CD ⇒ AB nhận Giải bài 1 trang 93 sgk Hình học 10 | Để học tốt Toán 10 là một vtpt

A(5;1) ∈ AB

⇒ Phương trình đường thẳng AB: 1( x- 5) + 2(y -1) = 0 hay x + 2y – 7 = 0

+ ABCD là hcn ⇒ BC ⊥ CD ⇒ BC nhận Giải bài 1 trang 93 sgk Hình học 10 | Để học tốt Toán 10 là một vtpt

C(0, 6) ∈ CD

⇒ Phương trình đường thẳng BC: 2(x- 0)- 1(y – 6) =0 hay 2x – y + 6 = 0.

10 tháng 5 2016

2x - 7y - 5 = 0 và 3x + 4y - 22 = 0

10 tháng 5 2016

Hoc24 lại cứ thách đố học sinh hiha

MAX hại não với một học sinh lớp 7.

NV
9 tháng 3 2021

Giả sử phương trình AC là 2x-5y+6=0 và pt BC là 4x+7y-21=0

Phương trình đường cao AH qua H và vuông góc BC:

\(7\left(x-0\right)-4\left(y-0\right)=0\Leftrightarrow7x-4y=0\)

Pt đường cao BH qua H vuông AB: \(2x+5y=0\)

Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}2x-5y+6=0\\7x-4y=0\end{matrix}\right.\) \(\Leftrightarrow A\left(-4;-7\right)\)

Tọa độ B là nghiệm \(\left\{{}\begin{matrix}4x+7y-21=0\\2x+5y=0\end{matrix}\right.\) \(\Rightarrow B\left(\dfrac{35}{2};-7\right)\)

Phương trình AB: \(y+7=0\)