\(\frac{x+1}{x-m+1}=\frac{x}{x+m+2}\) tap hop cac gia tri nguyên để phươ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

quy đồg bỏ mẫu ta được( đk x khác 0, x khác -1)

x2+mx+(x+1)(x-2)=2x(x+1)

x2+mx=(x+1)(2x-(x-2))

x2+mx=(x+1)(x+2)

x2+mx=x2+3x+2

(m-3)x=2

vậy để pt vô nghiệm thì m-3=0 hay m=3

26 tháng 2 2019

Câu a:

Hỏi đáp Toán

26 tháng 3 2018

a/ Với m=\(\sqrt{2}\)ta có: x2+(2\(\sqrt{2}\)-1)x-\(\sqrt{2}\)=0

\(\Delta=\left(2\sqrt{2}-1\right)^2-4\sqrt{2}=8-4\sqrt{2}+1-4\sqrt{2}=9\)

=> \(\hept{\begin{cases}x_1=\frac{1-2\sqrt{2}-3}{2}=-\sqrt{2}-1\\\text{​​}x_2=\frac{1-2\sqrt{2}+3}{2}=2-\sqrt{2}\end{cases}}\)

b/ Ta có: A=x12+x22 - 6x1x2 = x12+2x1x2+x22 - 8x1x2=(x1+x2)2 - 8x1x2

Theo Vi-et có: x1x2=c/a = -m  và x1+x2 = -b/a = 1-2m

Thay vào A ta được: 

A = (1-2m)2-8(-m) = 1-4m+4m2+8m = 4m2+4m+1 = (2m+1)2

Nhận thấy: A=(2m+1)2\(\ge\)0 với mọi m

=> Amin=0, đạt được khi m=-1/2

Đáp số: m=-1/2

22 tháng 3 2016

bn chờ chút nhé mình đg bận

22 tháng 3 2016

Thằng thắng nó giải tùm  lum đấy coi chừng bị lừa đểu

5 tháng 4 2019

a)

\(\Delta'=\left(-2\right)^2-\left(4m-m^2\right)=4-4m+m^2=\left(m-2\right)^2\ge0\)

\(\Delta'\ge0\) nên phương trình có nghiệm với mọi m

b) Theo Vi-ét có

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=4m-m^2\end{matrix}\right.\)

Lấy phương trình đầu của hệ, kết hợp với đề bài, có

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_2=x_1^2-5x_1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x_2=x_1^2-5x_1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x_1^2-5x_1=4-x_1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x^2-4x_1+4=8\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\\left(x_1-2\right)^2=8\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\\left[{}\begin{matrix}x_1=2+2\sqrt{2}\\x_1=2-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1=2+2\sqrt{2}\\x_2=2+2\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x_1=2-2\sqrt{2}\\x_2=2-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

Ta có

\(x_1x_2=4m-m^2\)

Đã tìm được \(x_1\)\(x_2\) , thay vào để tìm m

20 tháng 3 2016

nhân chéo

x^2+xm+2x+x+m+2=x^2-xm+x

=>2xm+2x+m+2=0

=>2x(m+1)+m+2=0

để pt vô nghiệm thì m+1=0=>m=-1