Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số có cực đại và cực tiểu
\(\Leftrightarrow f'\left(x\right)=x^2-2mx+m=0\) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta'=m^2-m>0\Leftrightarrow m\in D=\left(-\infty,0\right)\cup\left(1,+\infty\right)\) (*)
Với điều kiện này thì \(f'\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số \(f\left(x\right)\) đạt cực trị tại \(x_1,x_2\). Theo định lí Viet ta có : \(x_1+x_2=2m;x_1x_2=m\) Suy ra :
\(\left|x_1-x_2\right|\ge8\Leftrightarrow\left|x_1-x_2\right|^2\ge64\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge64\Leftrightarrow4m^2-4m\ge64\)
\(\Leftrightarrow m^2-m-16\ge0\Leftrightarrow m\in\left(-\infty,\frac{1-\sqrt{65}}{2}\right)\cup\left(\frac{1+\sqrt{65}}{2},+\infty\right)\) (thỏa mãn (*))
Vậy để \(\left|x_1-x_2\right|\ge8\) thì \(m\in\left(-\infty,\frac{1-\sqrt{65}}{2}\right)\cup\left(\frac{1+\sqrt{65}}{2},+\infty\right)\)
Ta có \(\sqrt{\left(m+2\right)x+m}\ge\left|x-1\right|\Leftrightarrow\left(m+2\right)x+m\ge x^2-2x+1\)
\(\Leftrightarrow m\ge\frac{x^2-4x+1}{x+1}\) (vì \(x\in\left[0;2\right]\)
Xét hàm số \(f\left(x\right)=\frac{x^2-4x+1}{x+1}\) trên đoạn \(\left[0;2\right]\) ta có
\(f'\left(x\right)=\frac{x^2+2x-5}{\left(x+1\right)^2};f'\left(x\right)=0\Leftrightarrow x=-1+\sqrt{6}\)
Lập bảng biến thiên ta được
\(f\left(0\right)=1;f\left(2\right)=-1\)
\(f\left(-1+\sqrt{6}\right)=2\sqrt{6}-6\)
Vậy bất phương trình đã cho có nghiệm thì \(m>\) min (0;2] \(f\left(x\right)=f\left(-1+\sqrt{6}\right)=2\sqrt{6-6}\)
Hàm số có cực đại và cực tiểu \(\Leftrightarrow f'\left(x\right)=mx^2-2\left(m-1\right)x+3\left(m-2\right)=0\) có hai nghiệm phân biệt
\(\Leftrightarrow\begin{cases}m\ne0\\\Delta'=\left(m-1\right)^2-3m\left(m-2\right)>0\end{cases}\)
\(\Leftrightarrow1-\frac{\sqrt{6}}{2}\)<\(m\ne0\) <\(1+\frac{\sqrt{6}}{2}\) (*)
Với điều kiện (*) thì \(f'\left(x\right)=0\) có 2 nghiệm phân biệt \(x_{1,}x_2\) và hàm số \(f\left(x\right)\) đạt cực trị tại
........ đạt cực trị tại \(x_1,x_2.\)
Theo định lý Viet ta có : \(x_1+x_2=\frac{2\left(m-1\right)}{m};\) \(x_1\)\(x_2\)\(=\frac{3\left(m-2\right)}{m}\)
Ta có :
\(x_1+2x_2=1\) \(\Leftrightarrow\) \(x_2=1-\frac{2\left(m-1\right)}{m}=\frac{2-m}{m}\); \(x_2=\frac{2\left(m-1\right)}{m}-\frac{2-m}{m}=\frac{3m-4}{m}\)
\(\Leftrightarrow\frac{2-m}{m}.\frac{3m-4}{m}=\frac{3\left(m-2\right)}{m}\)
\(\Leftrightarrow\left(2-m\right)\left(3m-4\right)=3m\left(m-2\right)\)
\(\Leftrightarrow\begin{cases}m=2\\m=\frac{2}{3}\end{cases}\)
Cả 2 giá trị này đều thỏa mãn điều kiện (*).
Vậy \(x_1+2x_2=1\Leftrightarrow m=2,m=\frac{2}{3}\)
Ta có \(y'=3x^2-4\left(m-1\right)x+9\)
y' là tam thức bậc hai nên hàm số đạt cực đại, cực tiểu tại \(x_1,x_2\) khi và ch ỉ khi y' có hai nghiệm phân biệt
\(\Leftrightarrow\Delta=4\left(m-1\right)^2-27>0\) \(\Leftrightarrow\)\(\begin{cases}m>1+\frac{3\sqrt{3}}{2}\\m<1-\frac{3\sqrt{3}}{2}\end{cases}\) (1)
Theo Viet \(x_1+x_2=\frac{4\left(m-1\right)}{3}\); \(x_1x_2=3\)
Khi đó \(\left|x_1-x_2\right|=2\) \(\Leftrightarrow\) \(\left(x_1+x_2\right)^2-4x_1x_2=4\)
\(\Leftrightarrow\frac{16\left(m-1\right)^2}{9}-12=4\)
Lời giải:
Để hàm số đã cho cho đạt cực trị tại 2 điểm $x_1,x_2$ thì PT $y'=x^2-2mx+m^2+m-1=0$ phải có 2 nghiệm phân biệt.
Điều này xảy ra khi \(\Delta'=m^2-(m^2+m-1)=1-m>0\Leftrightarrow m< 1\)
Áp dụng định lý Vi-et: \(x_1+x_2=2m\)
Để $|x_1+x_2|=4\Leftrightarrw |2m|=4\Leftrightarrow m=\pm 2$
Kết hợp với ĐK $m< 1$ suy ra $m=-2$