Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)
\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)
Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho
\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)
\(\Rightarrow1< 2m< \sqrt[]{3}\)
\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)
a: cos3x=8
mà -1<=cos3x<=1
nên \(x\in\varnothing\)
b; \(-2\cdot cosx+\sqrt{3}=0\)
=>\(-2\cdot cosx=-\sqrt{3}\)
=>\(cosx=\dfrac{\sqrt{3}}{2}\)
=>x=pi/6+k2pi hoặc x=-pi/6+k2pi
c: cos(3x-pi/6)=0
=>3x-pi/6=pi/2+k2pi
=>3x=2/3pi+k2pi
=>x=2/9pi+k2pi/3
d: cos(x+2/3pi)=cos(pi/5)
=>x+2/3pi=pi/5+k2pi hoặc x+2/3pi=-pi/5+k2pi
=>x=-7/15pi+k2pi hoặc x=-13/15pi+k2pi
e: cos^2(3x)=4
=>cos3x=2(loại) hoặc cos3x=-2(loại)
Đáp án A